
Reguladores de presión y temperatura, tipo PM, y válvulas piloto

Reguladores de presión y temperatura, tipo PM, y válvulas piloto

Contenido		Página
	Introducción	3
	Características	3
	Diseño	4
	Datos técnicos	4
	Diseño, Funcionamiento	5
	Ejemplos de funciones	7
	Especificación de los materiales	
	Conexiones por bridas	17
	Pedidos de válvulas PM	
	Dimensiones y peso	20
	Accesorios	21
	Capacidades nominales	24
	Línea de líquido	24
	Línea de líquido bombeado	30
	Línea de aspiración húmeda	34
	Línea de aspiración seca	39
	Línea de descarga	45

Introducción

La PM es una válvula principal servoaccionada que se utiliza para regular la presión y la temperatura de las instalaciones frigoríficas.

La válvula principal PM se puede utilizar en el lado de alta y en el de baja presión del sistema, en líneas de aspiración húmedas o secas, así como en líneas de líquido sin cambio de fase (es decir, donde no se produce evaporación en la válvula).

El funcionamiento de la válvula principal PM depende únicamente de la presión de control que la válvula recibe, ya sea por medio de válvulas piloto o por medio de una presión de control externa. La PM 1 tiene conexión para una presión de control/una válvula piloto, mientras que la PM 3 tiene conexiones para tres presiones de control/tres válvulas piloto.

Las válvulas piloto Danfoss se pueden roscar directamente en la válvula principal o se pueden conectar mediante una tubería de pilotaje externa. Esto permite realizar un gran número de funciones con la misma válvula principal.

En uno de los laterales de la parte se puede conectar un manómetro con el que se puede medir la presión de entrada, por ejemplo, cuando la función de la válvula principal debe ajustarse a la regulación de la planta frigorífica por las válvulas piloto montadas.

La PM puede abrirse manualmente mediante un husillo situado en la cubierta superior de la válvula (aunque las PM 65 - 125 no pueden cerrarse completamente).

El tapón de fondo de la válvula puede cambiarse por un indicador de posición electrónico AKS 45 y se podrá leer electrónicamente la posición del cono de regulación.

Características

- Se puede utilizar con todos los refrigerantes corrientes no inflamables incluido el R 717, así como medios líquidos o gaseosos no corrosivos, teniendo en cuenta la compatibilidad de los materiales de estanqueidad.
- Amplia selección de bridas de acuerdo con los tamaños de conexiones de las normas DIN, ANSI, SOC, SA y FPT.
- Puede funcionar como válvula de función múltiple cuando se le acoplan varias válvulas piloto.
- Todas las válvulas piloto pueden aplicarse a todos los tamaños de válvula principal PM y pueden enroscarse directamente en la válvula principal, así se evitan las soldaduras y las líneas piloto externas.

- La válvula tiene una conexión de manómetro para la medición de la presión de entrada.
- La válvula tiene un filtro incorporado y un asiento de teflón que garantiza una gran estanqueidad sobre el asiento.
- La cubierta de la válvula principal PM puede orientarse en cualquier dirección sin que esto influya en el funcionamiento de la válvula.
- La válvula puede equiparse con un indicador de posición electrónico AKS 45, como accesorio.

Reguladores de presión y temperatura, tipo PM, y válvulas piloto

Diseño

Conexiones

La válvula principal PM se puede conectar mediante una amplia variedad de bridas que cubren los siguientes tipos:

- Soldar acero DIN (2448)
- Soldar acero ANSI (B 36.10)
- Manguitos soldar acero ANSI (B 16.11)
- Conexiones soldar cobre DIN(2856)
- Conexiones soldar cobre ANSI (B 16.22)
- Rosca interior FPT, NPT (ANSI/ASME B 1.20.1)

La válvula principal PM está diseñada como válvula servoaccionada que puede abrirse totalmente con una diferencia de presión muy baja (0.2 bar/2.9 psi). La ejecución de la válvula permite sólo su cierre hermético en la dirección de la flecha.

Directiva de Equipos a Presión (PED)
Las válvulas PM están homologadas según
la normativa europea que se especifica en la
Directiva de Equipos a Presión y tienen la marca
CE.

Para mas detalles / requisitos, ver instrucciones de montaje.

En la PM 1 se puede montar directamente una válvula piloto, mientras que en la PM 3 se pueden montar tres válvulas piloto.Dos de las conexiones para válvula piloto de la PM 3 (S1 y S2) están conectadas en serie, mientras que la tercera conexión para válvula piloto (P) está conectada en paralelo. Esto brinda un gran número de funciones diferentes con la misma válvula al combinar las funciones de las distintas válvulas piloto.

La válvula principal PM tiene un cono de regulación logarítmico ó con forma de V que garantiza una óptima exactitud de regulación. La cubierta de la válvula principal PM puede orientarse en cualquier dirección sin que esto influya en el funcionamiento de la válvula.

Cuerpo de válvula EN-GJS-400-18-LT

Juntas Sin asbesto.

Válvulas PM										
Tamaño Nominal	DN ≤ 25 (1 in.)	DN 32-125 mm (1 1/4 - 5 in.)	DN 150 mm (6 in.)							
Clasificado según	Grupo de fluido I									
Categoría	Artículo 3, párrafo 3	II	III							

Datos técnicos

Refrigerantes

Todos los refrigerantes corrientes no inflamables incluido el R 717, así como medios líquidos o gaseosos no corrosivos, teniendo en cuenta la compatibilidad de los materiales de estanqueidad.

No se recomiendan los hidrocarburos inflamables. Para más información, póngase en contacto con Danfoss.

- *Gama de temperatura* -60/+120°C (-76/+248°F).
- Acabado

PM 5 -65

El acabado externo es de zinc-cromado para proteger contra la corrosión.

PM 80-125

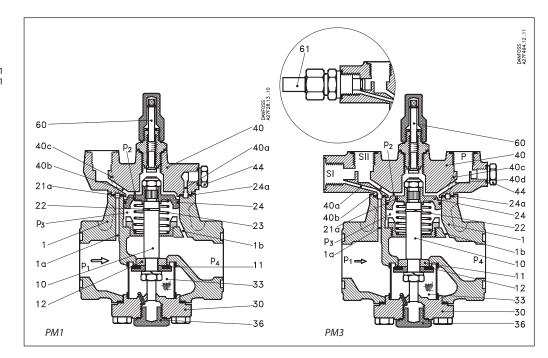
El acabado final son varias capas de pintura.

Gama de presión

Las válvulas están diseñadas para: Presión de trabajo máxima: 28 bar g (406 psig). Presión de prueba máxima: 42 bar g (609 psig).

Diferencia de presión para apertura máxima: Totalmente abierta: mín. 0.2 bar g (mín. 2.90 psig). MOPD máx. sólo para válvulas de solenoide (10 W c.a. y 20 W c.c.): 21 bar g (305 psig).

Filtro incorporado


PM 5 - 40 mesh: 950 μ (18 mesh/pulg.) PM 50 - 125 mesh: 1500 μ (10 mesh/pulg.)

Diseño, Funcionamiento

PM 1 y PM 3

- Cuerpo de válvula
- 1a. Canal en el cuerpo de válvula 1
- 1b. Canal en el cuerpo de válvula 1
- 10. Husillo de válvula
- Plato de válvula de teflón 11.
- Cono de estrangulamiento 12.
- 21a. Agujero de igualación en el servopistón 24
- 22 Anillo de retención
- 24 Servopistón
- Junta plana 24a.
- 30. Cubierta inferior
- Filtro de impurezas 33.
- Tapón de fondo 36.
- 40. Cubierta
- 40 a Canales en la cubierta 40
- 40 h Canales en la cubierta 40
- 40 c Canales en la cubierta 40
- Canales en la cubierta 40 40 d
- Conector para manómetro Husillo para apertura manual
- Conector de piloto externo
- SI, SII. Conectores de válvula piloto. Agujeros en serie
 - Conector de válvula piloto. Agujero en paralelo

El regulador PM es una válvula principal servoaccionada en la que sus funciones están determinadas por las válvulas piloto utilizadas. La válvula principal con una o varias válvulas piloto controla la cantidad de refrigerante en circulación de manera modulante o en modo todo/nada. según los impulsos de mando de la válvula piloto.

El grado de apertura del regulador PM está determinado por la diferencia entre la presión p₂, que se ejerce sobre la parte superior del servopistón (24) y la presión p₃ que se ejerce sobre su parte inferior.

Si esta diferencia de presión es nula, el regulador estará completamente cerrado.

Si la diferencia de presión es de 0.2 bar (2.9 psi) o superior, el regulador estará completamente abierto.

Para diferencias de presión (p₂-p₃) que se encuentran entre 0.07 bar (1 psi) y 0.2 bar (2.9 psi), el grado de apertura del regulador varía proporcionalmente.

La concepción del cono de estrangulamiento (12) es logarítmica, lo que asegura una característica de regulación de presión ideal para los reguladores de servopistón. La presión p₃ que reina sobre la parte inferior del servopistón (24), se iguala a la presión de salida p4 del regulador, por el canal (1b) alojado en el cuerpo de la

El grado de apertura del regulador es por lo tanto controlado ejerciendo sobre la cara superior del servopistón una presión p₂ que es igual o superior a la presión de salida p₄.

 $p_2 = p_4 \sim posición cerrada$ $p_2 = p_4 + 0.2 \text{ bar } (2.9 \text{ psi}) \sim \text{posición}$ completamente abierta $p_4 \le p_2 \le p_4 + 0.2$ bar (2.9 psi) ~ grado de apertura proporcional.

La presión máxima p₂ que puede establecerse sobre la parte superior del servopistón (24) corresponde normalmente a la presión p₁ que se ejerce sobre el lado de entrada del regulador. La presión de entrada p₁ es transmitida a la parte superior del servopistón (24) por las diferentes válvulas piloto, a través de los canales 1a, 40a, 40b, 40c y 40d taladrados en el cuerpo de válvula (1) y en la cubierta (40).

El grado de apertura de cada una de las válvulas piloto determina la importancia de la presión p₂ y por lo tanto el grado de apertura del regulador, ya que el agujero de igualación (21a) del servopistón (24) asegura un estado de equilibrio de la presión p₂ según el grado de apertura de la válvula piloto.

Nota:

Cuando la válvula principal PM 3 es utilizada con un conector de piloto externo (61), la presión de mando interna se obtura.

Sobre la válvula principal PM 1 se puede enroscar una única válvula piloto que controla por sí misma el grado de apertura de la válvula principal, de acuerdo con los impulsos de mando de dicha válvula piloto.

La PM 1 está completamente cerrada cuando la válvula piloto está completamente cerrada, y la PM está completamente abierta cuando la válvula piloto está completamente abierta. El grado de apertura de la PM es proporcional al grado de apertura de la válvula piloto elegida.

La válvula principal PM 3 se puede equipar con una, dos o tres válvulas piloto, para obtener hasta tres funciones distintas de regulación.

Diseño, Funcionamiento (continuación)

La relación entre las funciones de las válvulas piloto roscadas es la siguiente:

A. Las válvulas piloto montadas en los taladros SI y SII están conectadas en serie.

La válvula principal PM 3 está completamente cerrada si una sola de las válvulas piloto en serie está cerrada.

La válvula principal PM 3 sólo puede abrirse completamente cuando ambas válvulas piloto estén abiertas completamente al mismo tiempo.

B. La válvula piloto montada en el taladro P está conectada en paralelo con las válvulas piloto de los taladros SI y SII.

La válvula principal PM 3 está completamente abierta si la válvula piloto en P está completamente abierta, independientemente del grado de apertura de las válvulas piloto en SI

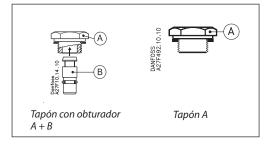
La válvula principal PM 3 está completamente cerrada si la válvula piloto en P está completamente cerrada y si por lo menos una de las válvulas piloto en SI o SII está completamente cerrada al mismo tiempo.

La relación entre las válvulas piloto montadas en SI, SII y P se ilustra en la tabla ilustrada más adelante.

Si la válvula principal PM 3 no está dotada de las tres válvulas piloto correspondientes, cada taladro que no sea utilizado deberá ser tapado con un tapón obturador.

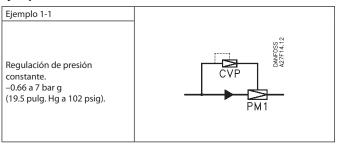
Si el tapón obturador se monta formando un conjunto completo A+B, los canales del taladro afectado quedarán constantemente cerrados. Si solamente se monta la parte superior A del tapón obturador, los canales del taladro afectado quedarán constantemente abiertos.

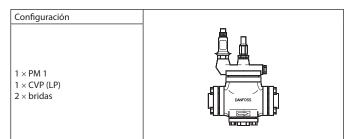
Si el grado de apertura del regulador PM no tiene que ser en función de la presión de entrada del regulador o si se desean más de tres funciones de regulación, los taladros SI, SII y P podrán dotarse de un manguito conector de una presión de mando externa. Esto se aplica tanto a la PM 1 como a la PM 3.

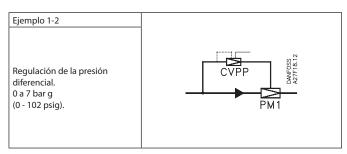

La presión p_2 en la parte superior del servopistón es ahora determinada por la presión reinante en la tubería de pilotaje externa que ha sido conectada. La función del regulador es ahora determinada por las válvulas piloto montadas en la tubería de pilotaje externa. La válvulas piloto pueden también utilizarse para tal configuración, pero cada válvula piloto deberá ser montada en un cuerpo de válvula por separado tipo CVH.

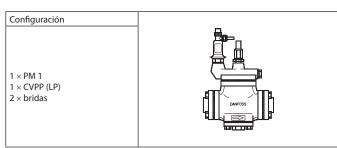
Según la función de las válvula piloto montadas, las características de regulación de la PM 3 son las siquientes:

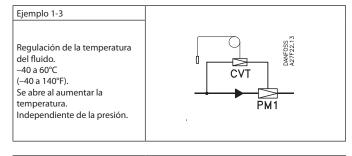
> todo/nada proporcional integral ó cascada.

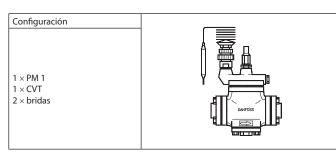

Por lo tanto, los reguladores PM son particularmente adecuados para todas las formas de sistemas de regulación de temperatura y de presión.

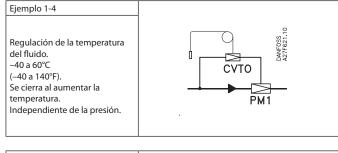

	Válvula piloto		Válvula
SI	SII	Р	principal PM3
Abierta	Abierta	Cerrada	Abierta
Abierta	Abierta	Abierta	Abierta
Abierta	Cerrada	Cerrada	Cerrada
Abierta	Cerrada	Abierta	Abierta
Cerrada	Abierta	Cerrada	Cerrada
Cerrada	Abierta	Abierta	Abierta
Cerrada	Cerrada	Cerrada	Cerrada
Cerrada	Cerrada	Abierta	Abierta

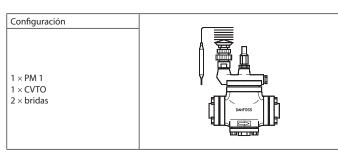


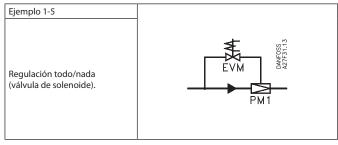


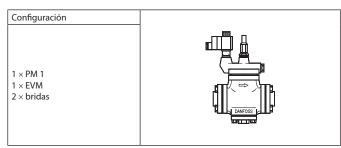

Ejemplos de funciones

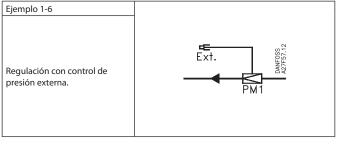


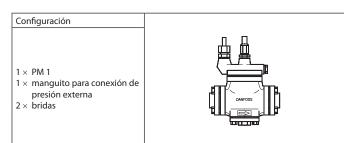


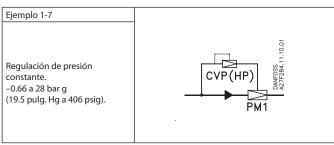


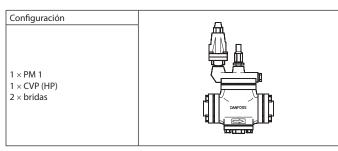


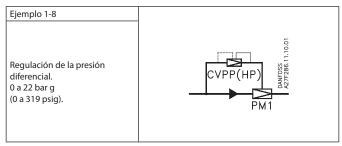


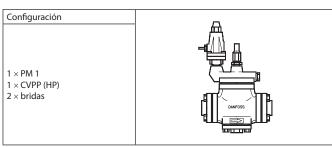


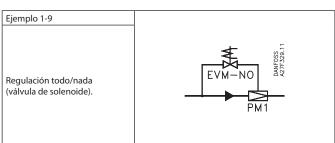


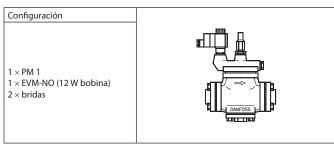


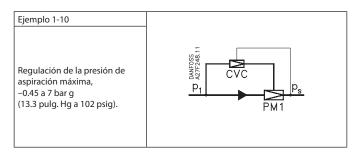


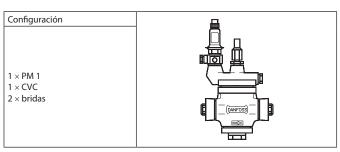


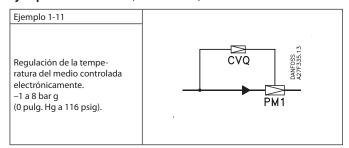


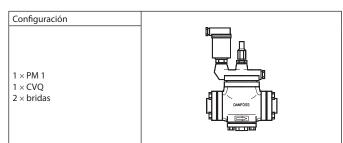


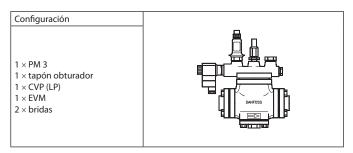


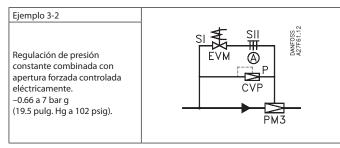


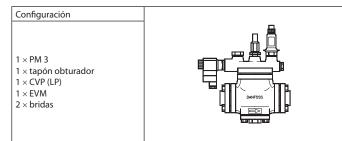


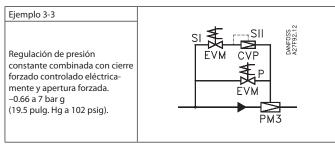


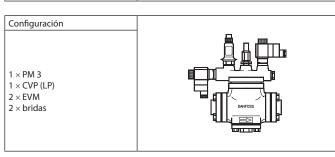


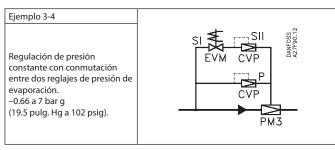

8

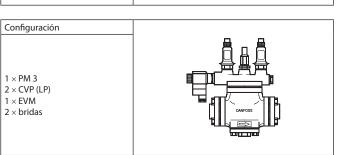


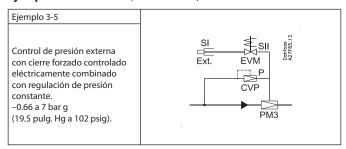


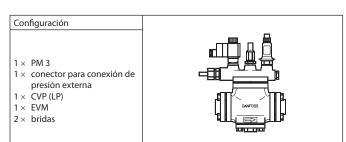


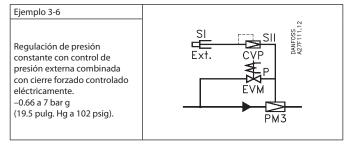

Regulación de presión constante combinada con apertura forzada controlada eléctricamente. -0.66 a 7 bar g (19.5 pulg. Hg a 102 psig).

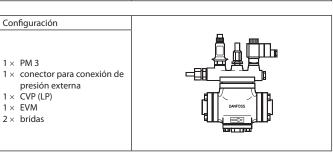


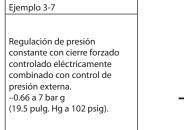


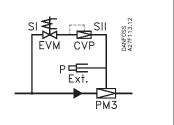


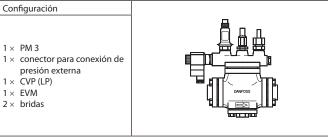


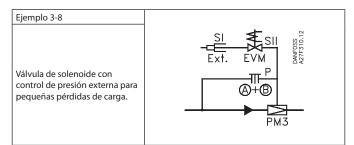


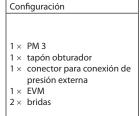


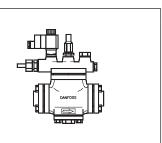


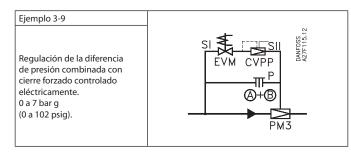


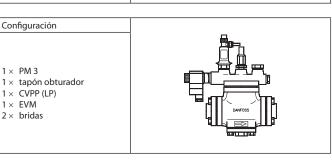




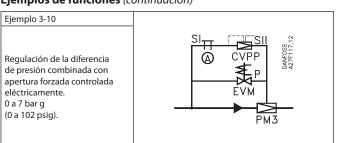


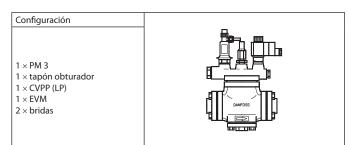


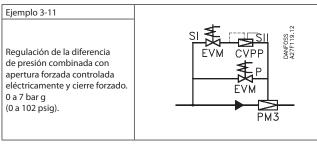


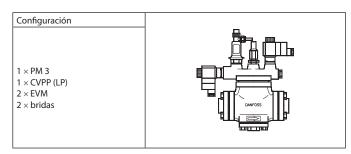

1 × PM 3

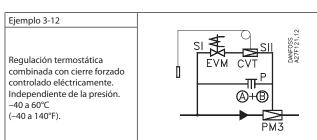
1 × EVM

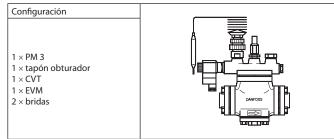

2 × bridas

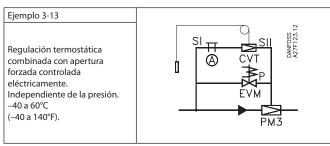


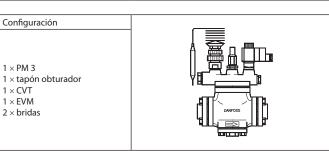


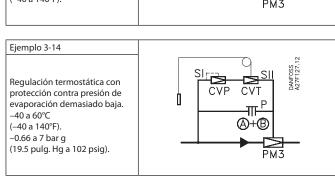


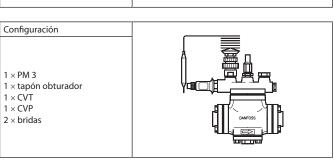


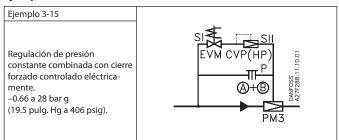


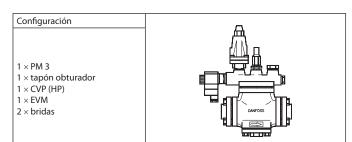


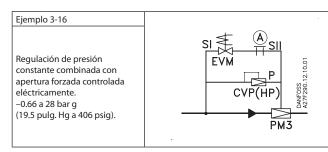


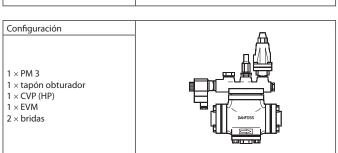


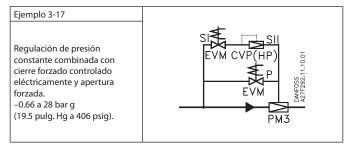


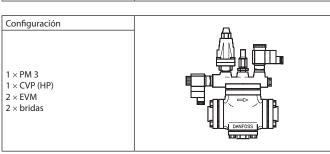


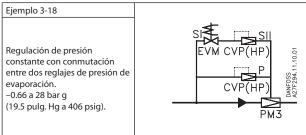


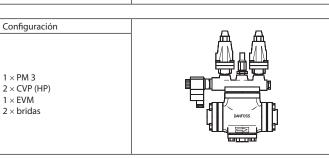


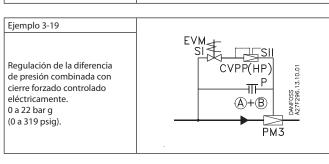


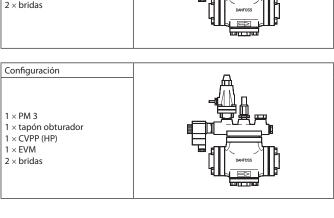


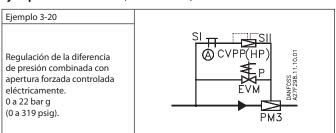


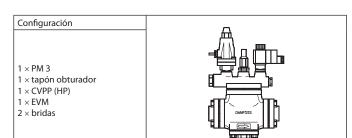


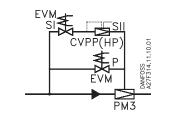


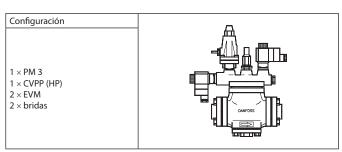




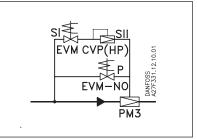




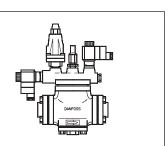




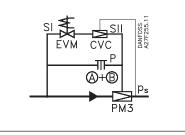
Ejemplo 3-21 Regulación de la diferencia de presión combinada con apertura forzada controlada eléctricamente y cierre forzado. 0 a 22 bar g (0 a 319 psig).



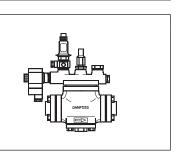
Regulación de presión constante combinada con cierre forzado controlado eléctricamente y apertura forzada. -0.66 a 28 bar g (19.5 pulg. Hg a 406 psig).


Ejemplo 3-22

Ejemplo 3-23

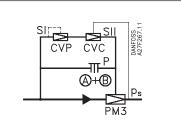


Configuración

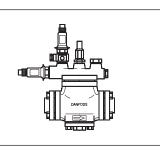


Regulación de la presión de aspiración máxima, combinada con cierre forzado.

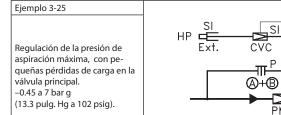
–0.45 a 7 bar g (13.3 pulg. Hg a 102 psig).



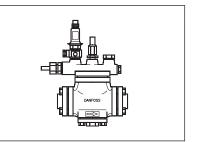
Ejemplo 3-24

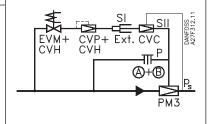

Regulación de la presión de aspiración máxima, combinada con regulación de la presión de evaporación.

-0.66 a 28 bar g (19.5 pulg. Hg a 406 psig).

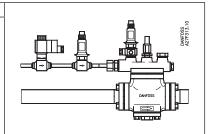

- 1 × PM 3
- 1 × tapón obturador
- $1 \times \text{CVC}$
- 1 × CVP(LP)
- $2 \times bridas$

13 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005



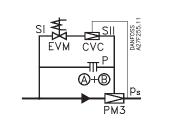

Configuración

- 1 × PM 3
- $1 \times tap\'{o}n$ obturador
- $1 \times conector$ para cone-xión de
- presión ext. 1 × CVC
- $2\times bridas$


Ejemplo 3-26

Regulación de presión de aspiración máxima, combinada con regulación de presión constante y cierre forzado controlado eléctricamente. -0.66 a 7 bar g (19.5 pulg. Hg a 102 psig).

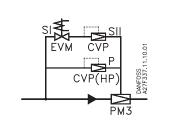
Configuración


- 1 × PM 3
- 1 × tapón obturador
- 1 × conector para cone-xión de presión ext.
- 1 × CVP (LP)
- 1 × EVM
- $2 \times \text{CVH}$
- $1 \times \text{CVC}$
- $2 \times bridas$

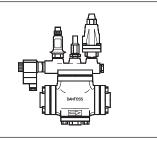
Ejemplo 3-27


Regulación de derivación de gas caliente combinada con cierre forzado.

-0.45 a 7 bar g (13.3 pulg. Hg a 102 psig).

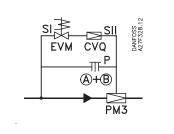

Configuración

- 1 × PM 3
- 1 × tapón obturador
- 1 × CVC
- 1 × EVM
- 2 × bridas

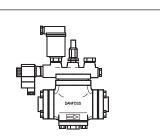

Ejemplo 3-28

Regulación de presión constante, con seguro contra alta presión cuando la línea de aspiración está cerrada. -0.66 a 28 bar g (19.5 pulg. Hg a 406 psig).

Configuración


- 1 × PM 3
- 1 × CVP (LP)
- 1 × EVM 1 × CVP (HP)
- $2\times bridas$

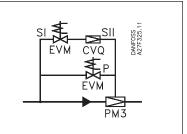
Ejemplo 3-29

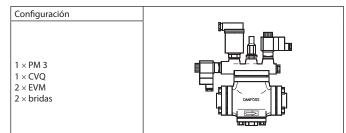

Regulación de la temperatura del medio controlada electrónicamente, combinada con cierre forzado.

(0 pulg. Hg a 116 psig).

Configuración

- 1 × PM 3
- 1 × tapón obturador
- 1 × CVO
- 1 × EVM
- $2\times bridas$

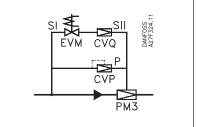


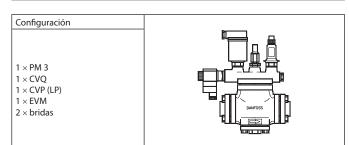


Ejemplo 3-30

Regulación de la temperatura del medio controlada electrónicamente, combinada con cierre forzado y apertura forzada.

–1 a 8 bar g (0 pulg. Hg a 116 psig).

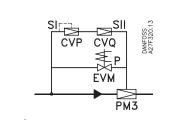


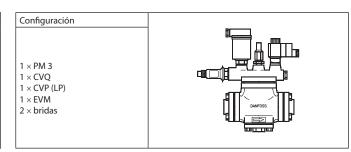

Ejemplo 3-31

Regulación de la temperatura del medio controlada electrónicamente, combinada con cierre forzado controlado eléctricamente y conmutación a regulación de presión constante.

–1 a 8 bar g

(0 pulg. Hg a 116 psig).

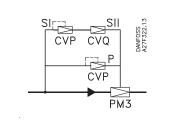


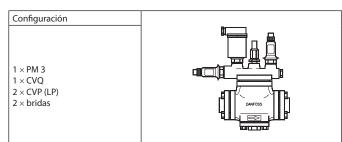

Ejemplo 3-32

Regulación de la temperatura del medio controlada electrónicamente, con protección contra baja temperatura de evaporación combinada con apertura forzada.

–1 a 8 bar g

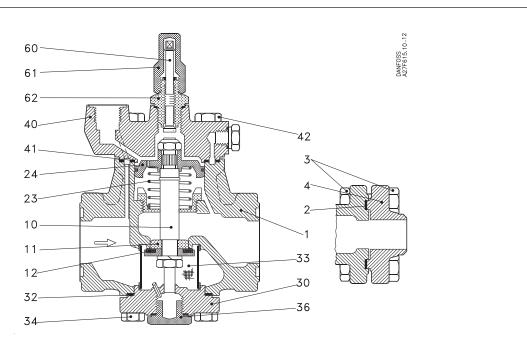
(0 pulg. Hg a 116 psig).





Ejemplo 3-33

Reg. de la temp. del medio controlada electrónicamente, con protección contra baja presión de evaporación combinada con conmutación a reg. de presión constante.


-1 a 8 bar g (0 pulg. Hg a 116 psig).

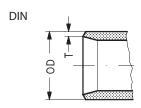
Especificación de los materiales

Especificación de los materiales de las válvulas PM

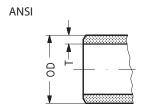
N°	Pieza	Material	DIN	ISO	ASTM
1	Cuerpo de válvula	Baja temperatura, fundición (esférica)	EN-GJS-400-18-LT EN 1563		
2	Junta entre cuerpo y brida	Sin metal Sin asbesto			
3	Pernos para brida	Acero inoxidable	A2-70	A2-70	Tipo 308
4	Brida PM 5 - 65	Acero	RSt. 37-2, 10025	Fe360 B, 630	Grado C, A 283
4	Brida PM 80 - 125	Acero	TSTE 355, 2635 / 3159		
10	Husillo	Acero	9SMn28 1651	Tipo 2 R683/9	1213 SAE J 403
11	Cono de estrangulamiento	Acero	9SMn28 1651	Tipo 2 R683/9	1213 SAE J 403
12	Asiento de válvula	Teflón [PTFE]			
23	Muelle	Acero			
24	Servopistón	Fundición	GG-25	Grado 250	Clase 40B
30	Cubierta inferior	Baja temperatura, fundición (esférica)	EN-GJS-400-18-LT EN 1563		
32	Junta entre cuerpo y cubierta inferior	Sin metal Sin asbesto			
33	Filtro	Acero inoxidable			
34	Tornillos para cubierta inferior	Acero inoxidable	A2-70	A2-70	Tipo 308
36	Tapón obturador	Acero	9SMn28 1651	Tipo 2 R683/9	1213 SAE J 403
40	Cubierta	Baja temperatura, fundición (esférica)	EN-GJS-400-18-LT EN 1563		
41	Junta plana	Sin metal Sin asbesto			
42	Tornillos para cubierta superior	Acero inoxidable	A2-70	A2-70	Tipo 308
60	Husillo de mando manual	Acero	9SMn28 1651	Tipo 2 R683/9	1213 SAE J 403
61	Tapa de husillo	Acero	9SMn28 1651	Tipo 2 R683/9	1213 SAE J 403
62	Prensaestopa	Acero	9SMn28 1651	Tipo 2 R683/9	1213 SAE J 403

16 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

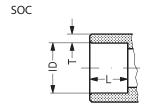
Conexiones por bridas


Los juegos de bridas Danfoss, incluidas las juntas, tornillos y tuercas han sido especialmente diseñados para la gama de válvulas Danfoss y sólo deben utilizarse para el montaje de dichas válvulas.

Al formular el pedido de las válvulas PM se eligen primeramente las conexiones por bridas, partiendo de los requisitos estándar de la conexión (los números de código que siguen se aplican a un juego de bridas). Seguidamente se elige la válvula deseada (aunque las PM 3-80 hasta PM 3-125 se suministran solamente con el juego de bridas DIN que está incluido en el número de código de cada válvula).


Tipo de

Tipo de


Nº de código

Tipo de válvula	Cone	exion	OD	T	OD	T	Tipo de	Nº de código
Tipo de valvala	mm	pulg.	mm	mm	pulg.	pulg.	brida	N de codigo
Soldadura de acero DIN (2448)								
PM 5, 10, 15, 20, 25	20 25 32	³ / ₄ 1 1 ¹ / ₄	26.9 33.7 42.4	2.3 2.6 2.6	1.059 1.327 1.669	0.091 0.103 0.102	3	027N1220 027N1225 027N1230
PM 32	32 40	1 ¹ / ₄ 1 ¹ / ₂	42.4 48.3	2.6 2.6	1.669 1.902	0.102 0.103	10	027N2332 027N2340
PM 40	40 50	1 ¹ / ₂ 2	48.3 60.3	2.6 2.9	1.902 2.370	0.103 0.110	11	027N2440 027N2450
PM 50	50 65	2 2¹/ ₂	60.3 76.1	2.9 2.9	2.370 3.000	0.110 0.110	12	027N2550 027N2565
PM 65	65 80	2 ¹ / ₂ 3	76.1 88.9	2.9 3.2	3.000 3.500	0.110 0.130	13	027N2665 027N2680
PM 80	100	4	114.3	3.6	4.500	0.140	14A	027F2123
PM 100	125	5	139.7	4.0	5.500	0.160	14B	027F2124
PM 125	150	6	168.3	4.5	6.630	0.180	14C	027F2125

Tipo de válvula	Cone	exión pulg.	OD mm	T mm	OD pulg.	T pulg.	Tipo de brida	Lista	N° de código
Soldadura de acero ANSI B	36.10								
PM 5, 10, 15, 20, 25	20 25 32	3/ ₄ 1 1 ¹ / ₄	26.9 33.7 42.4	4.0 4.6 4.9	1.059 1.327 1.669	0.158 0.181 0.193	3	80 80 80	027N3031 027N3032 027N3033
PM 32	32 40	1 ¹ / ₄ 1 ¹ / ₂	42.4 48.3	4.9 5.1	1.669 1.902	0.193 0.201	10	80 80	027N3034 027N3035
PM 40	40 50	1 ¹ / ₂ 2	48.3 60.3	5.1 3.9	1.902 2.370	0.201 0.150	11	80 40	027N3036 027N3037
PM 50	50 65	2 2 ¹ / ₂	60.3 73.0	3.9 5.2	2.370 2.870	0.150 0.200	12	40 40	027N3038 027N3039
PM 65	65 80	2 ¹ / ₂ 3	73.0 88.9	5.2 5.5	2.870 3.500	0.200 0.220	13	40 40	027N3040 027N3041
PM 80	100	4	114.3	6.0	4.500	0.240	14A	40	027N3042
PM 100	125	5	141.3	6.6	5.560	0.260	14B	40	027N3043
PM 125	150	6	168.3	7.1	6.630	0.280	14C	40	027N3044

Manguitos soldar acero ANSI (B 16.11)										
PM 5, 10, 15, 20, 25	20	3/4	27.2	4.9	1.071	0.193	13	0.512	2	027N2001
FIVI 3, 10, 13, 20, 23	25	1	33.9	5.7	1.335	0.224	13	0.512	3	027N2002
PM 32	32	11/4	42.7	6.05	1.681	0.238	13	0.512	10	027N2003
PM 40	40	11/2	48.8	6.35	1.921	0.250	13	0.512	11	027N2004
PM 50	50	2	61.2	6.95	2.409	0.274	16	0.630	12	027N2005
PM 65	65	21/2	74.0	8.75	2.913	0.344	16	0.630	13	027N2006

pulg.

mm

17 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Conexión

pulg.

mm

Tipo de válvula

Reguladores de presión y temperatura, tipo PM, y válvulas piloto

Conexiones por bridas

SA

mm pulg. mm pulg. mm pulg. brida	Tipo de válvula	Conexión		ID	ID	L	L	Tipo de	N° de código
		mm	pulg.	mm	pulg.	mm	pulg.	brida	N de codigo

Conexiones soldar cobre DIN (2856)

PM 5, 10, 15, 20, 25	22 28	22.08 28.08		16.5 26	3	027L1222 027L1228
PM 32	35	35.07		25	10	027L2335
PM 40	42	42.09		28	11	027L2442
PM 50	54	54.09		33	12	027L2554
PM 65	76	76.1		33	13	027L2676

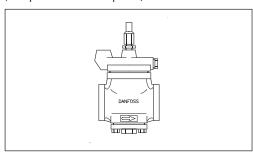
Conexiones soldar cobre (ANSI B 16.22)

PM 5, 10, 15, 20, 25	7/ ₈ 1 ¹ / ₈	0.875 1.125	0.650 1.024	3	027L1223 027L1229
PM 32	13/8	1.375	0.984	10	027L2335
PM 40	15/8	1.625	1.102	11	027L2441
PM 50	21/8	2.125	1.300	12	027L2554
PM 65	2 ⁵ / ₈	2.625	1.300	13	027L2666

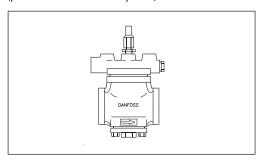
FPT

Tipo de válvula	Cone	exión	Rosca interior	Tipo de	N° de código
	mm	pulg.	nosca interior	brida	N de codigo

Rosca interior FPT, NPT (ANSI/ASME B 1.20.1)


PM 5, 10, 15, 20, 25	20	3/4	(3/ ₄ × 14 NPT)	2	027G1001
	25	1	(1 × 11.5 NPT)	3	027G1002

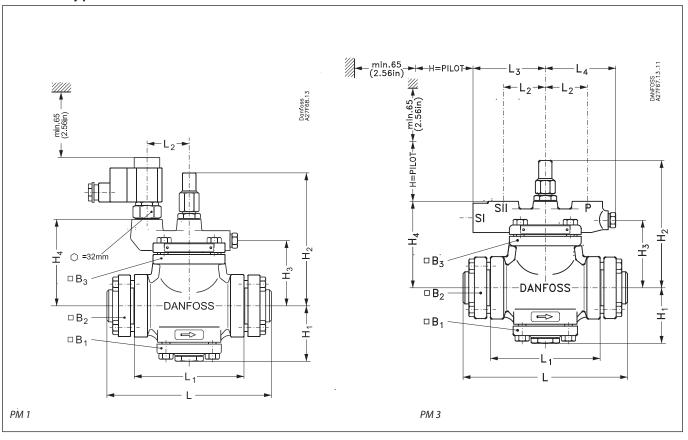
Pedidos de válvulas PM


Válvula principal PM 1 (sólo para una válvula piloto)

El número de código incluye: válvula PM 1 con juntas de bridas y tornillos (pero **sin** bridas).

The state of the land	N° de código
Tipo de válvula	EN-GJS-400-18-LT*
PM 1-5	027F3001
PM 1-10	027F3002
PM 1-15	027F3003
PM 1-20	027F3004
PM 1-25	027F3005
PM 1-32	027F3006
PM 1-40	027F3007
PM 1-50	027F3008
PM 1-65	027F3009

Válvula principal PM 3 (para hasta tres válvulas piloto)

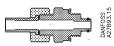

El número de código incluye: válvula PM 3 con juntas de bridas y tornillos (pero **sin** bridas).

Time de célecole	N° de código
Tipo de válvula	EN-GJS-400-18-LT*
PM 3-5	027F3010
PM 3-10	027F3011
PM 3-15	027F3012
PM 3-20	027F3013
PM 3-25	027F3014
PM 3-32	027F3015
PM 3-40	027F3016
PM 3-50	027F3017
PM 3-65	027F3018
PM 3-80	027F1271
PM 3-100	027F1276
PM 3-125	027F1281

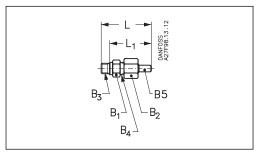
^{*} Marcado CE

Dimensiones y peso

Tipo de válvula		H ₁	H ₂	H ₃	H ₄	L	L ₁	L ₂	L ₃	L ₄	B ₁	B ₂	B ₃	Peso 1)	Peso 1)
Cuerpo de válvulo	Cuerpo de válvula PM 1 y PM 3 con bridas PM 1 PM 3														
PM 5 - 25	mm	66	162	79	101	177	106	52	94	89	75	Brida	87	6.5 kg.	7 kg.
(DN 20 - 25 - 32)	pulg.	2.60	6.38	3.11	3.98	6.97	4.17	2.05	3.70	3.50	2.95	ovalada	3.43	14.3 lb	15.4 lb
PM 32	mm	72	178	96	118	240	170	52	94	89	84	82	94	10.8 kg.	11.3 kg.
(DN 32 - 40)	pulg.	2.83	7.01	3.78	4.65	9.45	6.69	2.05	3.70	3.50	3.31	3.23	3.70	23.8 lb	24.9 lb
PM 40	mm	79	187	105	127	254	170	55	97	92	94	89	102	13.7 kg.	14 kg.
(DN 40 - 50)	pulg.	3.11	7.36	4.13	5.00	10.00	6.69	2.17	3.82	3.62	3.70	3.50	4.02	30.2 lb	30.9 lb
PM 50	mm	95	205	123	144	288	200	55	97	92	104	106	113	19.5 kg.	19.8 kg.
(50 - 65)	pulg.	3.74	8.07	4.84	5.67	11.34	7.87	2.17	3.82	3.62	4.09	4.17	4.45	43.0 lb	43.7 lb
PM 65	mm	109	227	146	167	342	250	60	102	97	127	113	135	28 kg.	28.3 kg.
(65 - 80)	pulg.	4.29	8.94	5.75	6.57	13.46	9.84	2.36	4.02	3.82	5.00	4.45	5.31	61.7 lb	62.4 lb
PM 80	mm	152	365	214	238	437	310	69	115	119	190	235	210		80 kg.
(DN 100)	pulg.	5.98	14.37	8.43	9.37	17.20	12.20	2.72	4.53	4.69	7.48	9.25	8.27		176.4 lb
PM 100	mm	173	396	246	269	489	350	83	125	133	226	270	243		120 kg.
(DN 125)	pulg.	6.81	15.59	9.69	10.59	19.25	13.78	3.27	4.92	5.24	8.90	10.63	9.57		264.6 lb
PM 125	mm	208	453	301	325	602	455	99	151	155	261	300	286		170 kg.
(DN 150)	pulg.	8.19	17.83	11.85	12.80	23.70	17.91	3.90	5.94	6.10	10.28	11.81	11.26		374.8 lb


¹⁾ Válvula PM con bridas, pero sin válvulas piloto

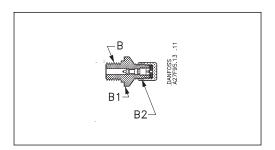
20 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005


Reguladores de presión y temperatura, tipo PM, y válvulas piloto

Accesorios

Conector para manómetro (soldar acero/cobre).

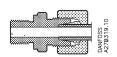
Descripción	Código
Ø 6.5 mm / Ø 10 mm (Ø 0.26 pulg. / Ø 0.39 pulg.) soldar acero / cobre	027B2035


Conector para manómetro (soldar acero/cobre)

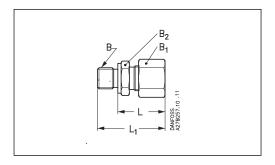
mm pulg.	66 2.60	54 2.13	○19	○22	G 1/ ₄ A	G ³ / ₈ A	Ø6.5/Ø10

Conector para manómetro, $^{1}/_{4}$ pulg. abocardada (cierre automático). No debe utilizarse en plantas de amoníaco.

Descripción	Código
1/4" abocardada	027B2041



Accesorios			В	B ₁	B ₂


Conector para manómetro, 1/4 pulg. abocardada (cierre automático)

¹ / ₄ " abocardada	mm pulg.					G 1/ ₄ A	○19	1/4" abocardada	
--	-------------	--	--	--	--	---------------------	-----	--------------------	--

Conector para manómetro, anillo (cutting ring).

Descripción	Código
Conexión por anillo de corte, 6 mm	027B2063
Conexión por anillo de corte, 10 mm	027B2064

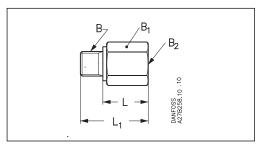
Accesorios	L	L ₁	В	B ₁	B ₂
------------	---	----------------	---	----------------	----------------

Conector para manómetro, anillo (cutting ring)

Conector para manometro, animo (catting ring)									
6 mm	mm pulg.		27 1.06	39 1.54		G ¹ / ₄ A	○19	○ 14	
10 mm	mm pulg.		29 1.14	40 1.57		G 1/4 A	○19	O 14	

Para pasar pedido de bridas de acero inoxidable, tornillos para bridas y para cubiertas superior e inferior, véase la sección de "conexiones por bridas".

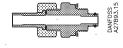
Reguladores de presión y temperatura, tipo PM, y válvulas piloto


Accesorios

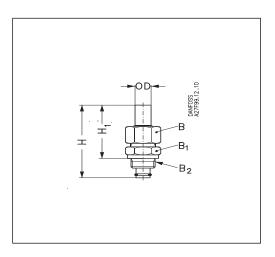
(continuación)

Conector para manómetro (1/4 FPT).

Descripción	Código
¹/₄ FPT	027B2062



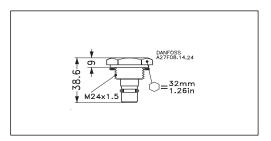
	Accesorios			L	L ₁		В	B ₁	B ₂
--	------------	--	--	---	----------------	--	---	----------------	----------------


Conector para manómetro

	mm pulg.		23 0.91	35.5 1.40		G ¹ / ₄ A	○ 22	¹/₄FPT
--	-------------	--	------------	--------------	--	---------------------------------	------	--------

Conector de piloto externo.

PM	Descripción	Código
5 - 65	Conector de piloto externo (incl. orificio de amortiguación, D:1,0 mm)	027F1048
80 - 125	Conector de piloto externo (incl. orificio de amortiguación, D:1,8mm)	027F1049
5 - 125	Bolsa de accesorios con juntas planas y tóricas para la válvula piloto	027F0666



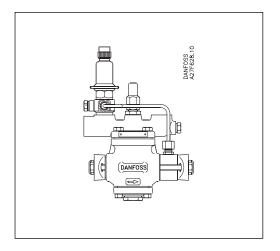
Accesorios			Н	H ₁	OD	В	B ₁	B ₂		
Conector de piloto externo										
·	mm		90	66	18	A 22	△ 22	M 24 1 5		
	pulg.		3.54	2.60	0.71	○32	○ 32	M 24 × 1.5		

Tapón obturador para válvulas piloto.

Descripción	Código
Tapón obturador	027F1046

Para pasar pedido de bridas de acero inoxidable, tornillos para bridas y para cubiertas superior e inferior, véase la sección de "conexiones por bridas".

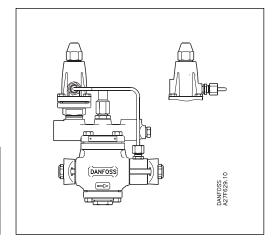
Reguladores de presión y temperatura, tipo PM, y válvulas piloto


Accesorios (continuación)

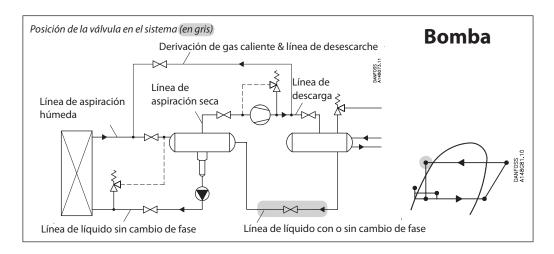
Kit de montaje para:

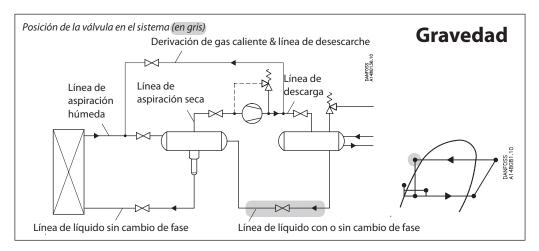
- PMC + CVC (derivación de gas caliente) y
- PM + CVC (regulador de presión de aspiración máxima).

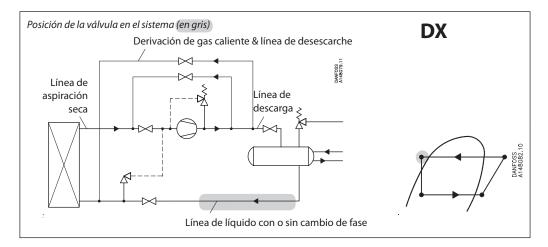
El kit de montaje contiene todas las piezas necesarias para montar una válvula piloto CVC en una válvula principal PM.


Válvula principad	Válvula piloto	Código
PMC 5 - 25 PM 5 - 25	CVC	027F3190
PM 32	CVC	027F3191
PM 40	CVC	027F3192
PM 50	CVC	027F3193
PM 65	CVC	027F3194

Kit de montaje: PM + CVPP (HP).


El kit de montaje contiene todas las piezas necesarias para montar una válvula piloto CVPP(HP)en una válvula principal PM.


Válvula principad	Válvula piloto	Código
PM 5 - 25	CVPP (HP)	027F3195
PM 32	CVPP (HP)	027F3196
PM 40	CVPP (HP)	027F3197
PM 50	CVPP (HP)	027F3198
PM 65	CVPP (HP)	027F3199



Línea de líquido

24 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Línea de líquido

Unidades SI

Ejemplo de cálculo (capacidades R 134a):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$T_e = -20^{\circ}\text{C}$$

 $Q_0 = 300 \text{ kW}$
 $T_{\text{liq}} = 10^{\circ}\text{C}$
 $\Delta P \text{ máx.} = 0.3 \text{ bar}$

La tabla de capacidad está basada en valores nominales ($\Delta P = 0.2$ bar, $T_{liq} = 30$ °C).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Factor de corrección para ΔP 0.3 bar $f_{\Delta P}$ = 0.82

Factor de corrección para temperatura de líquido $f_{\text{Tilg}} = 0.82$.

$$\begin{split} Q_n &= Q_o \times f_{\Delta P} \times f_{Tliq} = 300 \times 0.82 \times 0.82 \\ &= 202 \text{ kW}. \end{split}$$

De la tabla de capacidad se puede seleccionar una PM 25 con una capacidad Q_n 224 kW.

Unidades US

Ejemplo de cálculo (capacidades R 134a):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$\begin{split} T_e &= -20^\circ F \\ Q_o &= 130 \text{ TR} \\ T_{liq} &= 50^\circ F \\ \Delta P \text{ máx.} &= 5 \text{ psi} \end{split}$$

La tabla de capacidad está basada en valores nominales ($\Delta P = 3$ psi, $T_{liq} = 90$ °F).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Factor de corrección para ΔP 5 psi, $f_{\Delta P}=0.79$. Factor de corrección para temperatura de líquido $f_{Tliq}=0.81$.

$$\begin{aligned} &Q_{n} = Q_{o} \times f_{\Delta P} \times f_{Tliq} = 130 \times 0.79 \times 0.81 \\ &= 83.2 \, TR \end{aligned}$$

De la tabla de capacidad se puede seleccionar una PM 32 con una capacidad Q_n 91 TR.

Unidades SI

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, $T_{liq} = 30$ °C, $\Delta P = 0.2 \ bar$

Línea de líquido

R 717

Time	k _v	Temperatura de evaporación T _e							
Tipo	m³/h	−50°C	−40°C	-30°C	−20°C	−10°C	0°C	10°C	20°C
PM 5	1.6	161	164	166	168	170	172	174	175
PM 10	3	302	307	311	316	319	322	325	328
PM 15	4	403	410	415	421	426	430	434	437
PM 20	7	706	717	727	736	745	752	759	765
PM 25	11.5	1159	1177	1194	1210	1224	1236	1247	1256
PM 32	17.2	1734	1761	1786	1809	1830	1849	1865	1879
PM 40	30	3025	3071	3115	3156	3192	3225	3253	3277
PM 50	43	4335	4402	4465	4523	4576	4622	4663	4697
PM 65	79	7965	8088	8203	8310	8406	8492	8567	8629
PM 80	141	14216	14435	14640	14831	15004	15157	15290	15401
PM 100	205	20669	20987	21286	21563	21814	22036	22231	22392
PM 125	329	33171	33682	34161	34605	35009	35365	35677	35936

Factor de corrección para $\Delta P (f_{AP})$

Δι (ιΔΡ)	
ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para temperatura de líquido (T_{liq})

terriperatura a	cq a a. a (. q)
Temperatura de líquido	Factor de corrección
-20°C	0.82
-10°C	0.86
0°C	0.88
10°C	0.92
20°C	0.96
30°C	1.00
40°C	1.04
50°C	1.09

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], $T_{liq} = 90$ °F,

 $\Delta \dot{P} = 3 psi$

R 717

Tino	C _v Temperatura de evaporación T _e								
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	46	47	47	48	48	49	49	49
PM 10	3.5	86	88	89	90	90	91	92	92
PM 15	4.6	115	117	118	119	121	121	122	122
PM 20	8.1	202	204	207	209	211	212	214	214
PM 25	13.3	331	336	340	343	347	349	351	352
PM 32	20	495	502	508	514	518	522	525	527
PM 40	35	864	876	886	896	904	911	915	919
PM 50	50	1238	1255	1271	1284	1296	1305	1312	1317
PM 65	92	2275	2306	2334	2359	2381	2398	2411	2419
PM 80	164	4060	4116	4166	4211	4249	4280	4303	4317
PM 100	238	5902	5984	6057	6122	6178	6223	6256	6277
PM 125	382	9473	9603	9721	9825	9914	9987	10040	10074

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para ΛP (f_{ss})

$\Delta P (I_{\Delta P})$	
ΔP (psi)	Factor de corrección
3	1.00
	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62

Factor de corrección para temperatura de líquido (T_{lia})

temperatura de liquido (T _{liq})						
Temperatura de líquido	Factor de corrección					
-10°F	0.82					
10°F	0.85					
30°F	0.88					
50°F	0.92					
70°F	0.96					
90°F	1.00					
110°F	1.04					
130°F	1.09					

Línea de líquido

Capacidades nominales

Unidades SI

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, $T_{liq} = 30$ °C, $\Delta P = 0.2 \, bar$

R 22

Time	k _v			Te	e evaporación	T _e			
Tipo	m³/h	−50°C	−40°C	−30°C	−20°C	−10°C	0°C	10°C	20°C
PM 5	1.6	32	33	34	35	36	36	37	38
PM 10	3	59	61	63	65	67	68	70	71
PM 15	4	79	82	84	87	89	91	93	94
PM 20	7	139	143	147	151	155	159	162	165
PM 25	11.5	228	235	242	249	255	261	266	271
PM 32	17.2	341	352	362	372	382	391	399	406
PM 40	30	594	613	632	649	666	681	695	708
PM 50	43	852	879	906	931	954	976	996	1014
PM 65	79	1565	1616	1664	1710	1754	1794	1831	1863
PM 80	141	2794	2883	2970	3052	3130	3202	3267	3326
PM 100	205	4062	4192	4319	4437	4550	4655	4750	4835
PM 125	329	6519	6728	6931	7120	7303	7471	7623	7760

Factor de corrección para $\Delta P (f_{AB})$

$\Delta \Gamma (I_{\Delta P})$	
ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para temperatura de líquido (T_{lig})

temperatura de riquido (Tiq)					
Temperatura	Factor de				
de líquido	corrección				
-20°C	0.71				
-10°C	0.75				
0°C	0.80				
10°C	0.86				
20°C	0.92				
30°C	1.00				
40°C	1.09				
50°C	1.22				

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración],

 $T_{liq} = 90$ °F, $\Delta P = 3 psi$

R 22

T	C _v		Temperatura de evaporación T _e								
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F		
PM 5	1.9	9	9	10	10	10	10	11	11		
PM 10	3.5	17	17	18	18	19	19	20	20		
PM 15	4.6	22	23	24	25	25	26	27	27		
PM 20	8.1	39	41	42	43	44	45	47	47		
PM 25	13.3	64	67	69	71	73	75	76	78		
PM 32	20	96	100	103	106	109	112	114	116		
PM 40	35	168	174	179	185	190	195	199	203		
PM 50	50	240	249	257	265	272	279	286	291		
PM 65	92	441	457	473	487	501	513	525	534		
PM 80	164	788	816	843	869	893	916	937	954		
PM 100	238	1146	1187	1226	1264	1299	1331	1362	1387		
PM 125	382	1838	1904	1968	2028	2084	2136	2187	2226		

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para

$\Delta P (I_{\Delta P})$	
ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62

Factor de corrección para temperatura de líquido (T_{lig})

temperatura de liquido (T _{liq})						
Temperatura	Factor de					
de líquido	corrección					
-10°F	0.73					
10°F	0.77					
30°F	0.82					
50°F	0.87					
70°F	0.93					
90°F	1.00					
110°F	1.09					
130°F	1.20					

27 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Unidades SI

La tabla de capacidad está basada en los valores nominales, Q_N [kW], $T_{liq} = 30$ °C, $\Delta P = 0.2$ bar

Línea de líquido

R 134a

T:	k _v		Temperatura de evaporación T _e							
Tipo	m³/h	−50°C	−40°C	−30°C	−20°C	-10°C	0°C	10°C	20°C	
PM 5	1.6	-	28	30	31	32	34	35	36	
PM 10	3	-	53	56	58	61	63	66	68	
PM 15	4	-	71	75	78	81	84	87	90	
PM 20	7	-	125	130	136	142	148	153	158	
PM 25	11.5	-	205	214	224	233	243	251	260	
PM 32	17.2	-	306	321	335	349	363	376	389	
PM 40	30	-	534	559	584	609	633	656	678	
PM 50	43	-	765	801	837	872	907	940	972	
PM 65	79	-	1406	1472	1539	1603	1666	1727	1785	
PM 80	141	-	2509	2628	2746	2861	2973	3082	3186	
PM 100	205	-	3648	3821	3993	4159	4323	4481	4632	
PM 125	329	-	5855	6131	6408	6675	6938	7192	7434	

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para $\Delta P (f_{\Delta P})$

ν Δι /	
ΔP (bar)	Factor de corrección
–20°C	0.66
−10°C	0.70
0°C	0.76
10°C	0.82
20°C	0.90
30°C	1.00
40°C	1.13
50°C	1.29

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], $T_{liq} = 90^{\circ}F$, $\Delta P = 3$ psi

R 134a

Tino	C _v		Temperatura de evaporación T _e						
Tipo	USgal/min	-60°F*	-40°F	-20°F	-°F	20°F	40°F	60°F	80°F
PM 5	1.9	-	8	8	9	9	10	10	10
PM 10	3.5	-	15	16	17	17	18	19	20
PM 15	4.6	-	20	21	22	23	24	25	26
PM 20	8.1	-	35	37	39	41	42	44	46
PM 25	13.3	-	58	61	64	67	70	73	75
PM 32	20	-	86	91	95	100	104	109	112
PM 40	35	-	150	158	166	174	181	189	196
PM 50	50	-	215	227	238	249	260	271	281
PM 65	92	-	396	417	438	458	478	499	516
PM 80	164	-	707	744	782	818	853	890	921
PM 100	238	-	1027	1082	1136	1189	1240	1294	1340
PM 125	382	-	1649	1737	1824	1908	1990	2076	2150

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{AB})$

Δ1 (IΔP)	
ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62

Factor de corrección para temperatura de líquido (T_{io})

temperatura de liquido (T _{liq})					
Temperatura	Factor de				
de líquido	corrección				
-10°F	0.64				
10°F	0.68				
30°F	0.74				
50°F	0.81				
70°F	0.89				
90°F	1.00				
110°F	1.15				
130°F	1.35				

Unidades SI

R 404A

Línea de líquido

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, $T_{liq} = 30$ °C,

 $\Delta P = 0.2 \ bar$

Tipo	k _v		Temperatura de evaporación T _e							
Про	m³/h	−50°C	-40°C	−30°C	-20°C	−10°C	0°C	10°C	20°C	
PM 5	1.6	17.8	19.1	20	22	23	24	25	26	
PM 10	3	33	36	38	40	43	45	47	48	
PM 15	4	45	48	51	54	57	60	62	64	
PM 20	7	78	83	89	94	99	104	109	113	
PM 25	11.5	128	137	146	155	163	171	179	185	
PM 32	17.2	192	205	219	232	244	256	267	277	
PM 40	30	334	358	381	404	426	447	466	483	
PM 50	43	479	513	546	579	611	641	668	693	
PM 65	79	880	942	1004	1064	1122	1177	1228	1273	
PM 80	141	1570	1681	1792	1899	2002	2100	2191	2272	
PM 100	205	2283	2445	2605	2761	2911	3054	3185	3303	
PM 125	329	3663	3923	4181	4431	4672	4901	5112	5300	

Factor de corrección para $\Lambda P (f_{AB})$

$\Delta r (I_{\Delta P})$	
ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para temperatura de líquido (T_{lia})

	- · · · · · · · · · · · (· · q /			
Temperatura	Factor de			
de líquido	corrección			
-20°C	0.55			
-10°C	0.60			
0°C	0.66			
10°C	0.74			
20°C	0.85			
30°C	1.00			
40°C	1.23			
50°C	1.68			

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración],

 $T_{liq} = 90$ °F, $\Delta P = 3 psi$

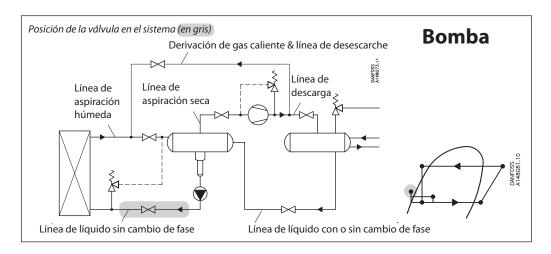
R 404A

T	C _v	Temperatura de evaporación T _e								
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F	
PM 5	1.9	4.9	5.3	5.7	6.1	6.4	6.8	7.1	7.4	
PM 10	3.5	9.2	9.9	10.6	11.4	12.1	12.7	13.3	13.8	
PM 15	4.6	12.2	13.2	14.2	15.2	16.1	16.9	17.8	18.4	
PM 20	8.1	21	23	25	27	28	30	31	32	
PM 25	13.3	35	38	41	44	46	49	51	53	
PM 32	20	53	57	61	65	69	73	76	79	
PM 40	35	92	99	106	114	121	127	133	138	
PM 50	50	131	142	153	163	173	182	191	198	
PM 65	92	241	261	280	299	317	334	351	364	
PM 80	164	431	466	501	534	567	597	626	649	
PM 100	238	626	677	728	777	824	868	911	944	
PM 125	382	1005	1087	1168	1247	1322	1392	1461	1515	

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62


Factor de corrección para temperatura de líquido (T_{liq})

	1 1197			
Temperatura de líquido	Factor de corrección			
-10°F	0.52			
10°F	0.57			
30°F	0.63			
50°F	0.72			
70°F	0.83			
90°F	1.00			
110°F	1.29			
130°F	1.92			

29 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Línea de líquido bombeado

Unidades SI

Ejemplo de cálculo (capacidades R 717):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$T_e = -20^{\circ}C$$

 $Q_0 = 180 \text{ kW}$
Régimen de circulación = 3
 ΔP máx. = 0.3 bar

La tabla de capacidad está basada en valores nominales ($\Delta P = 0.2$ bar, Régimen de circulación = 4).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Factor de corrección para ΔP 0.3 bar $f_{\Delta P}$ = 0.82

Factor de corrección para régimen de circulación $f_{\text{rec}} = 0.75$.

$$\begin{aligned} Q_n &= Q_0 \times f_{\Delta p} \times f_{rec} = 180 \times 0.82 \times 0.75 \\ &= 111 \text{ kW}. \end{aligned}$$

De la tabla de capacidad se puede seleccionar una PM 15 con una capacidad Q_n 133 kW.

Unidades US

Ejemplo de cálculo (capacidades R 717):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$T_{e}=-20^{\circ}F$$
 $Q_{0}=130\,TR$ Régimen de circulación = 3 ΔP máx. = 5 psi

La tabla de capacidad está basada en valores nominales ($\Delta p = 3$ psi, Régimen de circulación = 4).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Factor de corrección para ΔP 5 psi $f_{\Delta p}=0.79$ Factor de corrección para régimen de circulación $f_{rec}=0.75$.

$$Q_n = Q_0 x f_{\Delta P} x f_{circ} = 140 \times 0.79 \times 0.75 = 83 TR$$

De la tabla de capacidad se puede seleccionar una PM 25 con una capacidad Q_{n} 114 TR.

30

Unidades SI

La tabla de capacidad está basada en los valores nominales, Q_N [kW], Régimen de circulación = 4, $\Delta P = 0.2$ bar

Línea de líquido bombeado

R 717

T:	k _ν Temperatura de evaporación T _e						T _e		
Tipo	m³/h	−50°C	−40°C	−30°C	−20°C	-10°C	0°C	10°C	20°C
PM 5	1.6	58	57	55	53	51	50	48	46
PM 10	3	109	106	103	100	96	93	89	85
PM 15	4	146	142	137	133	129	124	119	114
PM 20	7	255	248	241	233	225	217	208	199
PM 25	11.5	420	407	395	383	370	356	342	328
PM 32	17.2	628	609	591	572	553	533	512	490
PM 40	30	1095	1063	1031	998	964	929	893	855
PM 50	43	1569	1523	1478	1431	1382	1332	1280	1225
PM 65	79	2883	2798	2715	2629	2539	2448	2351	2251
PM 80	141	5146	4994	4847	4691	4532	4369	4197	4017
PM 100	205	7482	7261	7046	6821	6589	6351	6102	5841
PM 125	329	12007	11654	11309	10947	10575	10193	9793	9374

Factor de corrección para $\Delta P (f_{AP})$

ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para régimen de circulación (f_{rec})

	(-160)			
Régimen de	Factor de			
circulación	corrección			
2	0.5			
3	0.75			
4	1			
6	1.5			
8	2			
10	2.5			

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], Régimen de circulación = 4, $\Delta P = 3$ psi

R 717

Ti	C _v	Temperatura de evaporación $T_{\rm e}$								
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F	
PM 5	1.9	16.9	16.4	15.9	15.3	14.7	14.1	13.4	12.8	
PM 10	3.5	32	31	30	29	28	26	25	24	
PM 15	4.6	42	41	40	38	37	35	34	32	
PM 20	8.1	74	72	69	67	64	62	59	56	
PM 25	13.3	121	118	114	110	106	101	96	92	
PM 32	20	182	176	170	165	158	152	144	137	
PM 40	35	317	307	297	287	276	264	251	239	
PM 50	50	454	440	426	411	395	379	360	343	
PM 65	92	834	809	783	756	726	696	662	630	
PM 80	164	1489	1443	1397	1349	1295	1242	1182	1124	
PM 100	238	2165	2098	2031	1961	1883	1806	1718	1634	
PM 125	382	3474	3367	3260	3148	3022	2898	2757	2623	

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{AP})$

Δ: ('ΔΡ)	
ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62

Factor de corrección para régimen de circulación (f_{rec})

regimen ac en calación (irec)						
Régimen de	Factor de					
circulación	corrección					
2	0.5					
3	0.75					
4	1					
6	1.5					
8	2					
10	2.5					

Unidades SI

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, Régimen de circulación = 4, $\Delta P = 0.2$ bar

Línea de líquido bombeado

R 22

T:	k _v		Temperatura de evaporación T _e						
Tipo	m³/h	−50°C	−40°C	−30°C	−20°C	-10°C	0°C	10°C	20°C
PM 5	1.6	14	14	13	13	12	12	11	10
PM 10	3	27	26	25	24	23	22	21	19
PM 15	4	36	34	33	32	30	29	27	26
PM 20	7	62	60	58	56	53	51	48	45
PM 25	11.5	102	99	95	91	87	83	79	74
PM 32	17.2	153	148	142	137	131	124	118	110
PM 40	30	267	258	248	238	228	217	205	193
PM 50	43	383	370	356	342	327	311	294	276
PM 65	79	703	679	654	628	600	571	540	508
PM 80	141	1255	1212	1168	1121	1071	1019	964	906
PM 100	205	1825	1763	1698	1629	1558	1482	1402	1317
PM 125	329	2929	2829	2725	2615	2500	2378	2249	2114

Factor de corrección para $\Delta P (f_{\Lambda P})$

ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para régimen de circulación (f_{rec})

	· 100			
Régimen de	Factor de			
circulación	corrección			
2	0.5			
3	0.75			
4	1			
6	1.5			
8	2			
10	2.5			

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], Régimen de circulación = 4, $\Delta P = 3$ psi

R 22

T'	C _v	Temperatura de evaporación T _e							
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	4.1	4.0	3.8	3.6	3.5	3.3	3.0	2.8
PM 10	3.5	8	7	7	7	6	6	6	5
PM 15	4.6	10	10	10	9	9	8	8	7
PM 20	8.1	18	17	17	16	15	14	13	12
PM 25	13.3	30	29	27	26	25	24	22	20
PM 32	20	44	43	41	39	37	35	33	30
PM 40	35	77	75	71	68	65	61	57	53
PM 50	50	111	107	102	98	93	88	82	76
PM 65	92	204	196	188	180	171	161	151	140
PM 80	164	364	350	336	321	305	288	269	249
PM 100	238	529	509	489	467	444	419	391	363
PM 125	382	849	817	784	749	712	673	627	582

 $^{^{\}ast}~~2^{\circ}F$ por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (psi)	Factor de corrección			
3	1.00			
4	0.87			
5	0.79			
6	0.72			
7	0.66			
8	0.62			

Factor de corrección para régimen de circulación (frac)

regimen de circulación (I _{rec})						
Régimen de circulación	Factor de corrección					
2	0.5					
3	0.75					
4	1					
6	1.5					
8	2					
10	2.5					

Unidades SI

R 40

La tabla de capacidad está basada en los valores nominales, Q_N [kW], Régimen de circulación = 4, $\Delta P = 0.2$ bar

Línea de líquido bombeado

R 404A

Tipo k _v Temperatura de evaporación T _e									
Про	m³/h	−50°C	-40°C	−30°C	-20°C	-10°C	0°C	10°C	20°C
PM 5	1.6	12	11	11	10	9	9	8	7
PM 10	3	22	21	20	19	18	17	15	14
PM 15	4	29	28	26	25	24	22	20	19
PM 20	7	51	49	46	44	41	39	36	33
PM 25	11.5	83	80	75	72	68	64	59	54
PM 32	17.2	125	120	113	108	102	95	88	80
PM 40	30	217	208	197	188	177	166	154	140
PM 50	43	311	299	282	269	254	238	220	200
PM 65	79	572	549	519	495	467	437	405	368
PM 80	141	1021	980	926	883	834	781	722	657
PM 100	205	1484	1424	1346	1284	1213	1135	1050	956
PM 125	329	2382	2286	2160	2061	1947	1822	1685	1534

Factor de corrección para $\Delta P (f_{AP})$

Δ: ('ΔΡ/	
ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para régimen de circulación (f_{rec})

regimen ac circulación (rec)					
Régimen de	Factor de				
circulación	corrección				
2	0.5				
3	0.75 1				
4					
6	1.5				
8	2				
10	2.5				

Unidades US

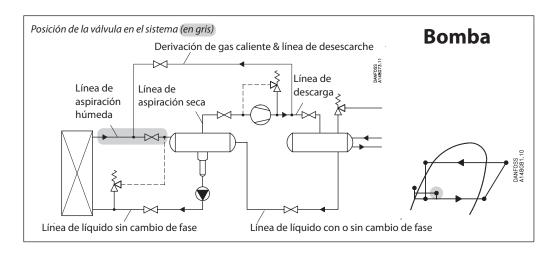
La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], Régimen de circulación = 4, $\Delta P = 3 \ psi$

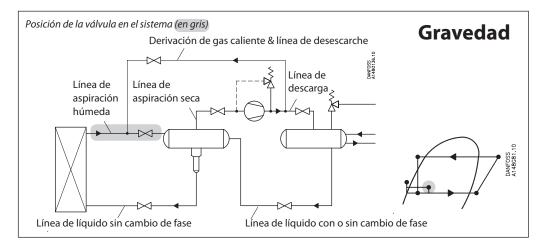
R 404A

T:	C _v	Temperatura de evaporación T _e							
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	3.4	3.2	3.0	2.9	2.7	2.5	2.2	2.0
PM 10	3.5	6	6	6	5	5	5	4	4
PM 15	4.6	8	8	8	7	7	6	6	5
PM 20	8.1	15	14	13	13	12	11	10	9
PM 25	13.3	24	23	22	21	19	18	16	14
PM 32	20	36	35	33	31	29	27	24	21
PM 40	35	63	60	57	54	50	47	42	37
PM 50	50	90	86	81	77	72	67	60	54
PM 65	92	166	159	150	141	133	123	111	98
PM 80	164	296	283	267	252	237	219	198	176
PM 100	238	431	412	388	367	344	318	287	255
PM 125	382	691	661	623	589	552	511	461	410

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para ΔP ($f_{\Delta P}$)


ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62


Factor de corrección para régimen de circulación (free)

regimen de circulación (i _{rec})				
Régimen de	Factor de			
circulación	corrección			
2	0.5			
3	0.75			
4	1			
6	1.5			
8	2			
10	2.5			

Línea de aspiración húmeda

34 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Unidades SI

Ejemplo de cálculo (capacidades R 717):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$T_e = -20^{\circ}C$$

 $Q_0 = 100$ kW
Régimen de circulación = 3
 ΔP máx. = 0.3 bar

La tabla de capacidad está basada en valores nominales ($\Delta P = 0.2$ bar, Régimen de circulación = 4).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Línea de aspiración húmeda

Factor de corrección para ΔP 0.3 bar $f_{\Delta P}$ = 0.82.

Factor de corrección para régimen de circulación $f_{\text{rec}} = 0.9. \label{eq:frec}$

$$Q_n = Q_0 \times f_{\Delta P} \times f_{rec} = 100 \times 0.82 \times 0.9$$

= 73,8 kW.

De la tabla de capacidad se puede seleccionar una PM 40 con una capacidad Q_n 107 kW.

Unidades US

Ejemplo de cálculo (capacidades R 717):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$T_e = -20^{\circ}F$$

 $Q_0 = 10$ TR
Régimen de circulación = 3
 ΔP máx. = 5 psi

La tabla de capacidad está basada en valores nominales ($\Delta P = 3$ psi, Régimen de circulación = 4).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Factor de corrección para ΔP 5 psi $f_{\Delta p}=0.79$. Factor de corrección para régimen de circulación $f_{rec}=0.9$.

$$Q_n = Q_0 \times f_{\Delta P} \times f_{circ} = 10 \times 0.79 \times 0.9 = 7.1 \ TR$$

De la tabla de capacidad se puede seleccionar una PM 25 con una capacidad Q_n 10.0 TR.

Unidades SI

La tabla de capacidad está basada en los valores nominales, Q_N [kW], Régimen de circulación = 4, $\Delta P = 0.2$ bar

Línea de aspiración húmeda

R 717

T:	k _v	Temperatura de evaporación T _e							
Tipo m³/h	−50°C	−40°C	-30°C	-20°C	-10°C	0°C	10°C	20°C	
PM 5	1.6	2.9	3.8	4.7	5.7	6.8	8.0	9.2	10.4
PM 10	3	5.5	7.1	8.8	10.7	12.8	15.0	17.2	19.6
PM 15	4	7.3	9.5	11.8	14.3	17.0	19.9	23.0	26.1
PM 20	7	12.8	16.6	20.6	25.0	29.8	34.9	40	46
PM 25	11.5	21.0	27.2	33.8	41	49	57	66	75
PM 32	17.2	31.4	41	51	61	73	86	99	112
PM 40	30	55	71	88	107	128	150	172	196
PM 50	43	79	102	126	154	183	214	247	281
PM 65	79	144	187	232	282	336	394	454	516
PM 80	141	258	334	415	504	600	703	810	920
PM 100	205	375	485	603	733	873	1022	1177	1338
PM 125	329	601	779	968	1176	1401	1640	1890	2147

Factor de corrección para $\Delta P (f_{\Lambda P})$

Δi (iΔP)	
ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para régimen de circulación (f_{rec})

regimen are en eanareren (nec)					
Régimen de	Factor de				
circulación	corrección				
2	0.77				
3	0.90				
4	1				
6	1.13				
8	1.20				
10	1.25				

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], Régimen de circulación = 4, $\Delta P = 3$ psi

R 717

T:	C _v	Temperatura de evaporación T _e							
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	0.8	1.1	1.4	1.7	2.1	2.5	2.8	3.2
PM 10	3.5	1.5	2.1	2.6	3.2	3.9	4.6	5.3	6.1
PM 15	4.6	2.0	2.7	3.5	4.3	5.2	6.2	7.1	8.1
PM 20	8.1	3.6	4.8	6.1	7.6	9.1	10.8	12.4	14.2
PM 25	13.3	5.9	7.9	10.0	12.4	15.0	17.7	20	23
PM 32	20	8.8	11.8	14.9	18.6	22	26	31	35
PM 40	35	15.3	21	26	32	39	46	53	61
PM 50	50	22	29	37	46	56	66	76	87
PM 65	92	40	54	69	85	103	122	140	160
PM 80	164	72	96	122	152	184	217	251	286
PM 100	238	104	140	178	221	267	315	365	415
PM 125	382	168	225	285	355	428	506	585	666

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P(f_{\Delta P})$

ΔP (psi)	Factor de corrección		
3	1.00		
4	0.87		
5	0.79		
6	0.72		
7	0.66		
8	0.62		

Factor de corrección para régimen de circulación (f_{rec})

regimen de circulación (i _{rec})				
Factor de				
corrección				
0.77				
0.90				
1				
1.13				
1.20				
1.25				

Unidades SI

La tabla de capacidad está basada en los valores nominales, Q_N [kW], Régimen de circulación = 4, $\Delta P = 0.2$ bar

Línea de aspiración húmeda

R 22

Tino	k _v	Temperatura de evaporación T _e								
Tipo	m³/h	−50°C	-40°C	−30°C	-20°C	−10°C	0°C	10°C	20°C	
PM 5	1.6	1.4	1.7	2.1	2.5	2.8	3.2	3.6	4.0	
PM 10	3	2.7	3.3	3.9	4.6	5.3	6.0	6.7	7.4	
PM 15	4	3.6	4.4	5.2	6.1	7.1	8.0	9.0	9.9	
PM 20	7	6.2	7.6	9.2	10.8	12.4	14.1	16	17	
PM 25	11.5	10.3	12.6	15.1	18	20	23	26	28	
PM 32	17.2	15.3	19	23	26	30	35	39	43	
PM 40	30	27	33	39	46	53	60	67	74	
PM 50	43	38	47	56	66	76	86	97	106	
PM 65	79	70	86	103	121	140	159	177	196	
PM 80	141	126	154	185	217	250	283	317	349	
PM 100	205	183	224	268	315	363	412	460	507	
PM 125	329	293	359	431	505	583	661	739	814	

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para régimen de circulación (f_{rec})

Régimen de circulación	Factor de corrección
2	0.77
3	0.90
4	1
6	1.13
8	1.20
10	1.25

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], Régimen de circulación = 4, $\Delta P = 3$ psi

R 22

T:	C _v	Temperatura de evaporación T _e							
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	0.4	0.5	0.6	0.7	0.9	1.0	1.1	1.2
PM 10	3.5	0.8	0.9	1.2	1.4	1.6	1.8	2.1	2.3
PM 15	4.6	1.0	1.3	1.5	1.8	2.1	2.4	2.8	3.0
PM 20	8.1	1.8	2.2	2.7	3.2	3.7	4.3	4.8	5.3
PM 25	13.3	2.9	3.6	4.4	5.3	6.1	7.0	8	9
PM 32	20	4.3	5.4	6.6	7.9	9	10	12	13
PM 40	35	7.6	9	12	14	16	18	21	23
PM 50	50	11	14	17	20	23	26	30	33
PM 65	92	20	25	30	36	42	48	54	60
PM 80	164	35	45	54	65	75	86	97	107
PM 100	238	52	65	79	94	109	125	141	156
PM 125	382	83	104	127	151	175	200	227	250

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{AB})$

Δι (ιΔρ)	
ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62

Factor de corrección para régimen de circulación (f_{rec})

regimen ac circulación (i _{rec})					
Factor de					
corrección					
0.77					
0.90					
1					
1.13					
1.20					
1.25					

© Danfoss A/S (RC-CMS / MWA), 02 - 2005 RD4XA505

Unidades SI

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, Régimen de circulación = 4, $\Delta P = 0.2$ bar

Línea de aspiración húmeda

R 404A

Time	k _v	Temperatura de evaporación T _e							
Tipo	m³/h	−50°C	-40°C	−30°C	−20°C	−10°C	0°C	10°C	20°C
PM 5	1.6	1.5	1.8	2.1	2.5	2.8	3.1	3.5	3.8
PM 10	3	2.8	3.4	3.9	4.6	5.3	5.9	6.5	7.1
PM 15	4	3.7	4.5	5.3	6.1	7.0	7.9	8.7	9.4
PM 20	7	6.5	7.8	9.2	10.7	12.3	13.8	15	16
PM 25	11.5	10.6	12.9	15.1	18	20	23	25	27
PM 32	17.2	15.9	19	23	26	30	34	37	41
PM 40	30	28	34	39	46	53	59	65	71
PM 50	43	40	48	56	66	75	85	93	101
PM 65	79	73	88	104	121	138	155	172	186
PM 80	141	130	158	185	216	247	277	306	332
PM 100	205	189	229	269	314	359	403	445	483
PM 125	329	304	368	432	504	576	647	715	775

Factor de corrección para $\Delta P (f_{\Lambda P})$

(11)	
ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para régimen de circulación (f_{rec})

Régimen de circulación	Factor de corrección
2	0.77
3	0.90
4	1
6	1.13
8	1.20
10	1.25

Unidades US

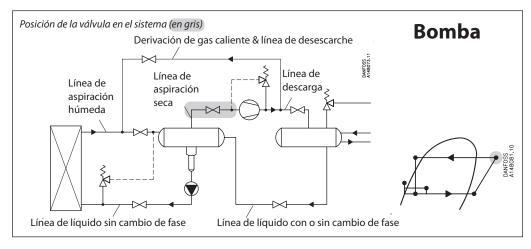
La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], Régimen de circulación = 4, $\Delta P = 3$ psi

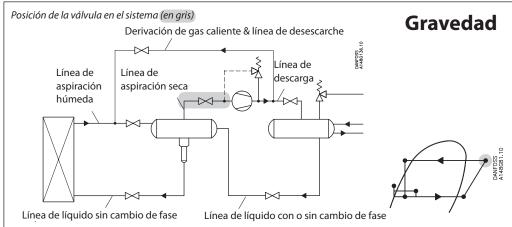
R 404A

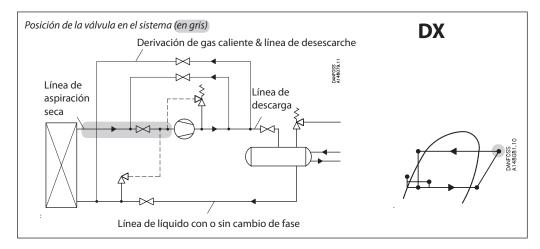
11 10 1										
T:	C _v		Temperatura de evaporación T _e							
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F	
PM 5	1.9	0.4	0.5	0.6	0.7	0.8	0.9	1.1	1.1	
PM 10	3.5	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.1	
PM 15	4.6	1.0	1.3	1.5	1.8	2.1	2.4	2.6	2.8	
PM 20	8.1	1.8	2.3	2.7	3.2	3.7	4.1	4.6	5.0	
PM 25	13.3	3.0	3.7	4.4	5.2	6.0	6.8	8	8	
PM 32	20	4.5	5.6	6.6	7.8	9	10	11	12	
PM 40	35	7.8	10	12	14	16	18	20	21	
PM 50	50	11	14	17	20	23	25	28	31	
PM 65	92	21	26	31	36	41	47	52	56	
PM 80	164	37	46	55	64	74	84	93	100	
PM 100	238	54	66	79	93	108	121	135	146	
PM 125	382	86	106	127	150	173	195	217	234	

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{\Delta P})$


ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62


Factor de corrección para régimen de circulación (f_{rec})


regimen de circulación (i _{rec})					
Régimen de	Factor de				
circulación	corrección				
2	0.77				
3	0.90				
4	1				
6	1.13				
8	1.20				
10	1.25				

Línea de aspiración seca

© Danfoss A/S (RC-CMS / MWA), 02 - 2005 RD4XA505

Unidades SI

Ejemplo de cálculo (capacidades R 134a):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$\begin{split} T_e &= -20 ^{\circ}\text{C} \\ Q_0 &= 90 \text{ kW} \\ T_{liq} &= 10 ^{\circ}\text{C} \\ T_s &= 6 ^{\circ}\text{C} \\ \Delta P \text{ máx.} &= 0.3 \text{ bar} \end{split}$$

La tabla de capacidad está basada en valores nominales ($\Delta P = 0.2$ bar, $T_{liq} = 30$ °C).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Línea de aspiración seca

Factor de corrección para ΔP 0.3 bar $f_{\Delta P}$ = 0.82

Factor de corrección para temperatura de líquido $f_{\text{Tliq}} = 0.82.$

Factor de corrección para recalentamiento $(T_s) = 1.0$.

$$\begin{aligned} Q_n &= Q_0 \times f_{\Delta P} \times f_{Tliq} \times f_{Ts} \\ &= 90 \times 0.82 \times 0.82 \times 1.0 = 60.5 \text{ kW} \end{aligned}$$

De la tabla de capacidad se puede seleccionar una PM 50 con una capacidad $\rm Q_n$ 64 kW.

Unidades US

Ejemplo de cálculo (capacidades R 134a):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$\begin{split} T_e &= 0^\circ F \\ Q_0 &= 23 \ TR \\ T_{liq} &= 50^\circ F \\ T_s &= 10^\circ F \\ \Delta P \ m\'{a}x. = 5 \ psi \end{split}$$

La tabla de capacidad está basada en valores nominales

$$(\Delta P = 3 \text{ psi}, T_{liq} = 90^{\circ}\text{F})$$

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Factor de corrección para ΔP 5 psi $f_{\Delta p}=0.79$. Factor de corrección para temperatura de líquido $f_{Tlia}=0.81$.

Factor de corrección para recalentamiento $(T_s) = 1.0$

$$\begin{split} Q_n &= Q_0 \times f_{\Delta P} \times f_{Tliq} \times f_{Ts} \\ &= 20 \times 0.79 \times 0.81 \times 1.0 = 12.6 \, TR \end{split}$$

De la tabla de capacidad se puede seleccionar una PM 40 con una capacidad Q_n -Leistung 13 TR.

Unidades SI

La tabla de capacidad está basada en los valores nominales, Q_N [kW], $T_{liq} = 30$ °C, $\Delta P = 0.2 \ bar$

Línea de aspiración seca

R 717

Tipo	k _v	Temperatura de evaporación T _e							
	m³/h	−50°C	-40°C	−30°C	-20°C	-10°C	0°C	10°C	20°C
PM 5	1.6	4.1	5.4	7.0	8.8	10.8	13.1	15.7	18.5
PM 10	3	7.7	10.2	13.1	16.5	20	25	29	35
PM 15	4	10.3	13.6	17.4	22	27	33	39	46
PM 20	7	18.1	24	31	38	47	57	69	81
PM 25	11.5	30	39	50	63	78	94	113	133
PM 32	17.2	44	59	75	94	116	141	169	199
PM 40	30	77	102	131	165	202	246	294	348
PM 50	43	111	146	187	236	290	352	422	498
PM 65	79	204	269	344	434	533	647	775	915
PM 80	141	364	480	615	774	952	1155	1383	1634
PM 100	205	529	698	894	1126	1384	1680	2011	2375
PM 125	329	848	1120	1435	1807	2221	2696	3227	3812

Factor de corrección para $\Delta P (f_{\Delta P})$

—· (-Δr)	
ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para

recalentamiento (1 _s)			
T,	Factor de		
I _S	corrección		
6°C	1.00		
8°C	1.00		
10°C	1.00		
12°C	1.00		

Factor de corrección para temperatura de líquido (T_{liq})

temperatara ac	riquido (Tiiq)
Temperatura de líquido	Factor de corrección
−20°C	0.82
−10°C	0.86
0°C	0.88
10°C	0.92
20°C	0.96
30°C	1.00
40°C	1.04
50°C	1.09

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración],

 $T_{liq} = 90$ °F, $\Delta P = 3$ psi

R 717

Tino	C _v	Temperatura de evaporación T _e							
Tipo	USgal/min	-60°F*	-40°F	−20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	1.1	1.6	2.1	2.6	3.3	4.1	4.9	5.9
PM 10	3.5	2.1	2.9	3.9	4.9	6.2	7.7	9.2	11.0
PM 15	4.6	2.9	3.9	5.1	6.6	8.3	10.2	12.3	14.7
PM 20	8.1	5.0	6.9	9.0	11.5	14.5	17.9	22	26
PM 25	13.3	8.2	11.3	14.8	18.9	24	29	35	42
PM 32	20	12.3	16.9	22	28	36	44	53	63
PM 40	35	21	29	39	49	62	77	92	110
PM 50	50	30.8	42	55	71	89	110	132	158
PM 65	92	56.5	78	101	130	164	202	243	290
PM 80	164	100.9	139	181	231	292	361	434	517
PM 100	238	146.6	202	263	336	425	525	631	752
PM 125	382	235	323	423	540	682	843	1013	1207

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62
8	

Factor de corrección para

recalentamiento (15)			
T _s	Factor de corrección		
10°F	1.00		
14°F	1.00		
18°F	1.00		
20°F	1.00		

Factor de corrección para temperatura de líquido (T_{lig})

Factor de corrección
0.82
0.85
0.88
0.92
0.96
1.00
1.04
1.09

41 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Unidades SI

La tabla de capacidad está basada en los valores nominales, Q_N [kW], $T_{liq} = 30$ °C, $\Delta P = 0.2$ bar

Línea de aspiración seca

R 22

Tipo	k _v	Temperatura de evaporación T _e							
Про	m³/h	−50°C	−40°C	−30°C	−20°C	−10°C	0°C	10°C	20°C
PM 5	1.6	1.6	2.1	2.7	3.3	4.1	4.9	5.8	6.8
PM 10	3	3.0	3.9	5.0	6.3	8	9	11	13
PM 15	4	4.1	5.3	6.7	8	10	12	15	17
PM 20	7	7.1	9	12	15	18	21	25	30
PM 25	11.5	12	15	19	24	29	35	42	49
PM 32	17.2	17	23	29	36	44	52	62	73
PM 40	30	30	39	50	63	76	92	109	128
PM 50	43	44	57	72	90	109	131	156	184
PM 65	79	80	104	132	165	200	241	287	337
PM 80	141	143	186	235	294	357	430	512	602
PM 100	205	208	270	342	427	519	626	744	876
PM 125	329	334	433	549	685	834	1004	1194	1405

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para recalentamiento (T_s)

to (1 ₅)
Factor de corrección
1.00
1.00
1.00
1.00

Factor de corrección para temperatura de líquido (T_{liq})

temperatura ac	qu
Temperatura de líquido	Factor de corrección
-20°C	0.71
−10°C	0.75
0°C	0.80
10°C	0.86
20°C	0.92
30°C	1.00
40°C	1.09
50°C	1.22

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], $T_{liq} = 90^{\circ}F$, $\Delta P = 3 \ psi$

R 22

T:	Cv	Temperatura de evaporación T _e							
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	0.4	0.6	0.8	1.0	1.2	1.5	1.8	2.2
PM 10	3.5	0.8	1.1	1.5	1.8	2.3	2.8	3.4	4.1
PM 15	4.6	1.1	1.5	1.9	2.5	3.1	3.7	4.6	5.4
PM 20	8.1	2.0	2.6	3.4	4.3	5.3	6.5	8	9
PM 25	13.3	3.2	4.3	5.6	7.1	9	11	13	16
PM 32	20	4.8	6.4	8	11	13	16	20	23
PM 40	35	8	11	15	18	23	28	34	41
PM 50	50	12.1	16	21	26	33	40	49	58
PM 65	92	22.2	30	38	49	60	74	90	107
PM 80	164	39.6	53	68	87	108	131	161	191
PM 100	238	57.5	77	99	126	156	191	234	278
PM 125	382	92	123	160	202	251	307	375	445

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para ΔP ($f_{\Delta P}$)

ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62

Factor de corrección para recalentamiento (T_s)

recalcinatinetito (15)				
T _s	Factor de corrección			
10°F	1.00			
14°F	1.00			
18°F	1.00			
20°F	1.00			

Factor de corrección para temperatura de líquido (T_{liq})

temperatura de	iiquido (T _{liq})
Temperatura de líquido	Factor de corrección
-10°F	0.73
10°F	0.77
30°F	0.82
50°F	0.87
70°F	0.93
90°F	1.00
110°F	1.09
130°F	1.20

42

Unidades SI

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, $T_{liq} = 30$ °C, $\Delta \dot{P} = 0.2 \, bar$

Línea de aspiración seca

R 134a

Tipo	k _v		Temperatura de evaporación T _e						
Про	m³/h	−50°C	-40°C	−30°C	−20°C	-10°C	0°C	10°C	20°C
PM 5	1.6	-	1.4	1.8	2.4	3.0	3.7	4.6	5.5
PM 10	3	-	2.6	3.4	4.5	5.6	7.0	8.6	10.4
PM 15	4	-	3.5	4.6	5.9	7.5	9.3	11.4	13.9
PM 20	7	-	6.0	8.0	10.4	13.1	16.3	20	24
PM 25	11.5	-	9.9	13.1	17.1	22	27	33	40
PM 32	17.2	-	14.9	20	26	32	40	49	60
PM 40	30	-	26	34	45	56	70	86	104
PM 50	43	-	37	49	64	80	100	123	149
PM 65	79	-	68	90	117	148	184	226	274
PM 80	141	-	122	161	209	264	329	403	489
PM 100	205	-	177	234	304	383	478	586	711
PM 125	329	-	284	376	488	615	767	941	1140

Factor de corrección para $\Delta P \; (f_{\Delta P})$

· 🖽 /	
ΔP (bar)	Factor de corrección
0.2	1.00
0.25	0.89
0.3	0.82
0.4	0.71
0.5	0.63
0.6	0.58

Factor de corrección para

recaientamien	to (1 _S)
T _s	Factor de corrección
6°C	1.00
8°C	1.00
10°C	1.00
12°C	1.00

Factor de corrección para temperatura de líquido (T_{lig})

Temperatura Factor de de líquido Corrección -20°C 0.66 -10°C 0.70				
-20°C	0.66			
−10°C	0.70			
0°C	0.76			
10°C	0.82			
20°C	0.90			
30°C	1.00			
40°C	1.13			
50°C	1.29			

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración],

 $T_{liq} = 90$ °F, $\Delta P = 3$ psi

R 134a

Tipo C _v Temperatura de evaporación T _e									
Про	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	-	0.4	0.5	0.7	0.9	1.2	1.5	1.8
PM 10	3.5	-	0.7	1.0	1.3	1.7	2.2	2.7	3.4
PM 15	4.6	-	1.0	1.3	1.8	2.3	2.9	3.7	4.5
PM 20	8.1	-	1.7	2.3	3.1	4.0	5.0	6	8
PM 25	13.3	-	2.8	3.8	5.0	7	8	10	13
PM 32	20	-	4.2	6	8	10	12	16	19
PM 40	35	-	7	10	13	17	22	27	34
PM 50	50	-	10	14	19	24	31	39	48
PM 65	92	-	19	26	35	45	57	72	88
PM 80	164	-	34	47	62	80	101	129	158
PM 100	238	-	50	68	90	116	148	187	229
PM 125	382	-	80	109	144	187	237	300	368

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{\Lambda P})$

—: (·ΔΡ)	
ΔP (psi)	Factor de corrección
3	1.00
4	0.87
5	0.79
6	0.72
7	0.66
8	0.62

Factor de corrección para recalentamiento (T_s)

recalentarmento (15)				
T,	Factor de			
I _S	corrección			
10°F	1.00			
14°F	1.00			
18°F	1.00			
20°F	1.00			

Factor de corrección para temperatura de líquido (T_{lia})

temperatura ac	riquido (Tilq)
Temperatura de líquido	Factor de corrección
-10°F	0.64
10°F	0.68
30°F	0.74
50°F	0.81
70°F	0.89
90°F	1.00
110°F	1.15
130°F	1.35

43 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Unidades SI

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, $T_{liq} = 30$ °C, $\Delta P = 0.2 \, bar$

Línea de aspiración seca

R 404A

Tipo	k _v	Temperatura de evaporación T _e							
	m³/h	−50°C	−40°C	−30°C	−20°C	−10°C	0°C	10°C	20°C
PM 5	1.6	1.2	1.6	2.1	2.7	3.4	4.2	5.2	6.2
PM 10	3	2.3	3.1	4.0	5.1	6	8	10	12
PM 15	4	3.1	4.1	5.3	7	9	11	13	16
PM 20	7	5.3	7	9	12	15	18	23	27
PM 25	11.5	9	12	15	20	25	30	37	45
PM 32	17.2	13	18	23	29	37	45	55	67
PM 40	30	23	31	40	51	64	79	97	116
PM 50	43	33	44	57	74	92	114	138	167
PM 65	79	60	81	105	135	169	209	254	306
PM 80	141	108	144	188	241	302	372	454	547
PM 100	205	157	209	273	351	438	541	660	795
PM 125	329	251	336	439	563	704	869	1059	1276

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (bar)	Factor de corrección		
0.2	1.00		
0.25	0.89		
0.3	0.82		
0.4	0.71		
0.5	0.63		
0.6	0.58		

Factor de corrección para

recalentamiento (1 _S)			
Factor de			
corrección			
1.00			
1.00			
1.00			
1.00			

Factor de corrección para temperatura de líquido (T_{lia})

	1 '119'
Temperatura de líquido	Factor de corrección
-20°C	0.55
−10°C	0.60
0°C	0.66
10°C	0.74
20°C	0.85
30°C	1.00
40°C	1.23
50°C	1.68

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración], $T_{liq} = 90$ °F, $\Delta P = 3 psi$

R 404A

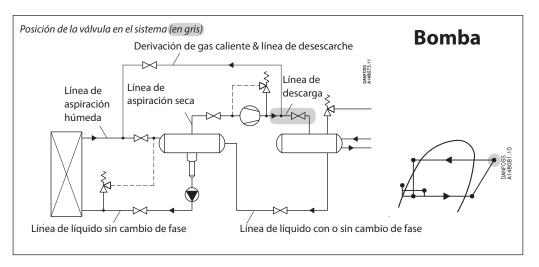
T:	C _v	Temperatura de evaporación T _e							
Tipo	USgal/min	−60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	0.3	0.5	0.6	0.8	1.0	1.3	1.6	2.0
PM 10	3.5	0.6	0.9	1.1	1.5	1.9	2.4	3.0	3.7
PM 15	4.6	0.8	1.1	1.5	2.0	2.6	3.2	4.1	4.9
PM 20	8.1	1.4	2.0	2.7	3.5	4.5	5.6	7	9
PM 25	13.3	2.4	3.3	4.4	5.8	7	9	12	14
PM 32	20	3.5	4.9	7	9	11	14	17	21
PM 40	35	6	9	11	15	19	24	30	37
PM 50	50	8.9	12	16	22	28	35	44	53
PM 65	92	16.3	22	30	40	51	64	80	98
PM 80	164	29.1	40	54	71	90	113	143	174
PM 100	238	42.2	58	78	103	131	165	208	254
PM 125	382	68	94	126	165	211	265	334	407

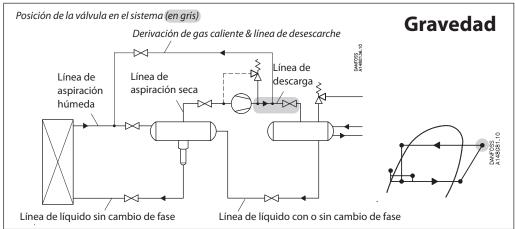
^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

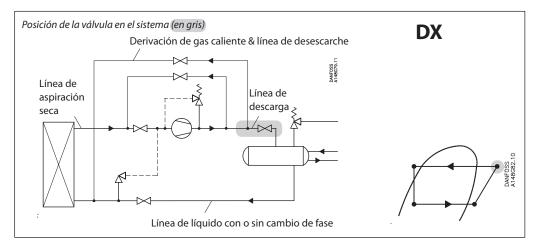
Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (psi)	Factor de corrección		
3	1.00		
4	0.87		
5	0.79		
6	0.72		
7	0.66		
8	0.62		

Factor de corrección para recalentamiento (T_s)


recalentamiento (15)			
T,	Factor de		
I _S	corrección		
10°F	1.00		
14°F	1.00		
18°F	1.00		
20°F	1.00		


Factor de corrección para


temperatura de liquido (T _{liq})				
Temperatura de líquido	Factor de corrección			
-10°F	0.52			
10°F	0.57			
30°F	0.63			
50°F	0.72			
70°F	0.83			
90°F	1.00			
110°F	1.29			
130°F	1.92			

Línea de descarga

© Danfoss A/S (RC-CMS / MWA), 02 - 2005 RD4XA505

Unidades SI

Ejemplo de cálculo (capacidades R 717):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$\begin{split} &T_e = -20 \text{ °C} \\ &Q_o = 90 \text{ kW} \\ &T_{liq} = 10 \text{ °C} \\ &\Delta P \text{ máx.} = 0.4 \text{ bar} \\ &T_{des} = 60 \text{ °C} \end{split}$$

La tabla de capacidad está basada en valores nominales ($\Delta P=0.2$ bar, $T_{liq}=30$ °C, $P_{des}=12$ bar, $T_{des}=80$ °C).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Línea de descarga

Factor de corrección para ΔP 0.4 bar $f_{\Delta P}$

= 0.72.

Factor de corrección para temperatura de líquido $f_{\text{Tliq}} = 0.92$.

Factor de corrección para T_{des} 60°C, f_{des}

= 0.97.

Factor de corrección para P_{des} 12 bar, f_{pdes} = 1 0

$$\begin{split} Q_n &= Q_o \times f_{\Delta P} \times f_{Tliq} \times f_{Tdes} \times f_{Pdes} \\ &= 90 \times 0.72 \times 0.92 \times 0.97 \times 1.0 = 58 \text{ kW}. \end{split}$$

De la tabla de capacidad se puede seleccionar una PM 20 con una capacidad Q_n 80 kW.

Unidades US

Ejemplo de cálculo (capacidades R 717):

Una aplicación tiene las siguientes condiciones de funcionamiento:

$$\begin{split} T_e &= 0^\circ F \\ Q_o &= 18 \ TR \\ T_{liq} &= 50 \ ^\circ F \\ \Delta P \ m\'{a}x. &= 7 \ psi \\ T_{des} &= 120 \ ^\circ F \end{split}$$

La tabla de capacidad está basada en valores nominales ($\Delta P=3$ psi, $T_{liq}=90$ °F, $P_{des}=185$ psi, $T_{des}=180$ °F).

Por lo tanto, la capacidad real deberá ser corregida al valor nominal mediante los factores de corrección.

Factor de corrección para ΔP 7 psi $f_{\Delta P}=0.67$. Factor de corrección para temperatura de líquido $f_{Tliq}=0.92$.

Factor de corrección para T_{des} 120°F, f_{des} = 0.95.

Factor de corrección para P_{des} 185 psi, f_{pdes} = 1.0.

$$\begin{aligned} Q_n &= Q_o \times f_{\Delta P} \times f_{Tliq} \times f_{circ} \times f_{Pdes} \\ &= 18 \times 0.67 \times 0.92 \times 0.95 \times 1.0 = 10.5 \, TR \end{aligned}$$

De la tabla de capacidad se puede seleccionar una PM15 con una capacidad Q_n 13.1 TR.

-40°C

17.8

33

44

78

128

191

333

478

878

1567

2279

3657

−30°C

18.0

34

45

79

130

194

338

485

891

1590

2311

3709

18.9

35

47

83

136

203

354

507

932

1664

2419

3882

Capacidades nominales

R 717

PM 5

PM 10

PM 15

PM 20

PM 25

PM 32

PM 40

PM 50

PM 65

PM 80

PM 100

PM 125

Línea de descarga

10°C

18.8

35

47

82

135

203

353

506

930

1660

2414

3874

Unidades SI

La tabla de capacidad está basada en los valores nominales, Q_N [kW],

 $T_{liq} = 30$ °C,

 $P_{des} = 12 \, bar,$

 $\Delta P = 0.2 \ bar,$

 $T_{des} = 80^{\circ}C$

Factor de corrección para $\Delta P (f_{\Delta P})$

m³/h

1.6

3

4

7

11.5

17.2

30

43

141

205

329

−50°C

17.5

33

44

77

126

188

328

471

1543

2244

3601

(-ΔΓ)			
ΔP (bar)	Factor de corrección		
0.2	1.00		
0.4	0.72		
0.6	0.59		
0.8	0.52		
1	0.46		
1.5	0.39		
2	0.34		
4	0.27		

Factor de corrección para temperatura de descarga (T.)

Temperatura de evaporación T_e

–10°C

18.5

35

46

81

133

199

347

497

913

1629

2369

3802

18.7

35

47

82

134

201

350

502

922

1645

2392

3839

-20°C

18.3

34

46

80

131

196

343

491

902

1610

2341

3757

descarga (1 _{des})
Factor de
corrección
0.96
0.97
1.00
1.01
1.03
1.04
1.06

Factor de corrección para temperatura de líquido (T.)

temperatura de liquido (T _{liq})			
Temperatura	Factor de		
de líquido	corrección		
−20°C	0.82		
−10°C	0.86		
0°C	0.88		
10°C	0.92		
20°C	0.96		
30°C	1.00		
40°C	1.04		
50°C	1.09		

Factor de corrección para presión de descarga (P_{des})

<u> </u>	J · Cues/	
P _{des} (bar)	Factor de corrección	
12	1.00	
16	0.87	
20	0.78	

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración],

 $T_{liq} = 90$ °F, $\Delta P = 3 \text{ psi},$

 $P_{des} = 185 \, psi$,

 $T_{des} = 180$ °F

R 717

Tino	C _v Temperatura de evaporación T _e								
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	5.1	5.1	5.2	5.2	5.3	5.3	5.4	5.4
PM 10	3.5	9.5	9.6	9.8	9.8	9.9	10.0	10.0	10.1
PM 15	4.6	12.7	12.8	13.0	13.1	13.2	13.4	13.4	13.5
PM 20	8.1	22	22	23	23	23	23	23	24
PM 25	13.3	36	37	37	38	38	38	38	39
PM 32	20.0	54	55	56	56	57	57	58	58
PM 40	35	95	96	98	98	99	100	100	101
PM 50	50	136	138	140	141	142	144	144	145
PM 65	92	250	253	257	259	261	264	264	266
PM 80	164	446	452	458	463	466	471	472	474
PM 100	238	648	658	667	673	678	685	686	689
PM 125	382	1041	1055	1070	1080	1088	1099	1101	1107

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (psi)	Factor de corrección
3	1.00
5	0.79
7	0.67
10	0.56
15	0.47
20	0.41
30	0.35
60	0.28

Factor de corrección para temperatura de descarga (T_{des})

temperatura de descarga (1 _{des})					
Temperatura	Factor de				
descarga	corrección				
120°F	0.95				
140°F	0.97				
180°F	1.00				
200°F	1.02				
210°F	1.02				
230°F	1.04				
250°F	1.06				

Factor de corrección para temperatura de líquido (Tia)

temperatura de liquido (T _{liq})					
Temperatura de líquido	Factor de corrección				
-10°F	0.82				
10°F	0.85				
30°F	0.88				
50°F	0.92				
70°F	0.96				
90°F	1.00				
110°F	1.04				
130°F	1.09				

Factor de corrección para presión de descarga (P_{des})

presion de descarga (r des)					
P _{des} (psi)	Factor de corrección				
185	1.00				
240	0.87				
300	0.78				

RD4XA505 47 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Unidades SI

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, $T_{liq} = 30$ °C, $P_{des} = 12 bar$,

 $\Delta P = 0.2 \, bar$,

 $T_{des} = 80^{\circ}C$

Factor de corrección para presión de descarga (P_{des})

P _{des} (bar)	Factor de corrección
12	1.00
16	0.87
20	0.78

R 22

Time	k _v	Temperatura de evaporación T _e							
Tipo	m³/h	−50°C	-40°C	-30°C	−20°C	−10°C	0°C	10°C	20°C
PM 5	1.6	5.5	5.7	5.9	6.0	6.2	6.3	6.5	6.6
PM 10	3	10.4	10.7	11.0	11.3	11.6	11.9	12.1	12.4
PM 15	4	13.8	14.3	14.7	15.1	15.5	15.9	16.2	16.5
PM 20	7	24.2	25.0	25.8	26.5	27.1	27.8	28.3	28.8
PM 25	11.5	39.8	41.1	42.3	43.5	44.6	45.6	46.5	47.4
PM 32	17.2	59.5	61.4	63.3	65.0	66.7	68.2	69.6	70.9
PM 40	30	103.8	107.2	110.4	113.4	116.3	119.0	121.4	123.6
PM 50	43	148.8	153.6	158.2	162.6	166.7	170.6	174.0	177.2
PM 65	79	273.4	282.2	290.7	298.7	306.3	313.4	319.8	325.5
PM 80	141	488.0	503.7	518.9	533.0	546.7	559.3	570.7	580.9
PM 100	205	709.5	732.3	754.4	775.0	794.8	813.2	829.7	844.6
PM 125	329	1138.7	1175.2	1210.7	1243.8	1275.6	1305.0	1331.6	1355.5

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (bar)	Factor de corrección
0.2	1.00
0.4	0.72
0.6	0.59
0.8	0.52
1	0.46
1.5	0.39
2	0.34
4	0.27

Factor de corrección para temperatura de descarga (T.)

temperatura de descarga (T _{des}				
Temperatura	Factor de			
descarga	corrección			
50°C	0.96			
60°C	0.97			
80°C	1.00			
90°C	1.01			
100°C	1.03			
110°C	1.04			
120°C	1.06			

Factor de corrección para temperatura de líquido (T_{liq})

Línea de descarga

Temperatura de líquido	Factor de corrección
-20°C	0.71
-10°C	0.75
0°C	0.80
10°C	0.86
20°C	0.92
30°C	1.00
40°C	1.09
50°C	1.22

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración],

 $T_{liq} = 90$ °F, $\Delta P = 3$ psi,

 $P_{des} = 185 \text{ psi,}$ $T_{des} = 180 \text{ °F}$

R 22

Ti	C _v	Temperatura de evaporación $T_{\rm e}$							
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	1.6	1.6	1.7	1.7	1.8	1.8	1.9	1.9
PM 10	3.5	3.0	3.1	3.2	3.3	3.4	3.5	3.5	3.6
PM 15	4.6	4.0	4.1	4.2	4.4	4.5	4.6	4.7	4.8
PM 20	8.1	6.9	7.2	7.4	7.6	7.9	8.1	8.2	8.4
PM 25	13.3	11.4	11.8	12.2	12.6	12.9	13.2	13.5	13.8
PM 32	20.0	17.0	17.6	18.2	18.8	19.3	19.8	20.3	20.6
PM 40	35	29.7	30.8	31.8	32.8	33.7	34.5	35.3	36.0
PM 50	50	42.6	44.1	45.6	47.0	48.3	49.5	50.6	51.5
PM 65	92	78.2	81.0	83.7	86.3	88.7	90.9	93.0	94.7
PM 80	164	139.6	144.6	149.4	154.0	158.3	162.2	166.0	169.0
PM 100	238	203.0	210.2	217.2	223.9	230.1	235.8	241.4	245.7
PM 125	382	325.7	337.4	348.6	359.3	369.3	378.5	387.4	394.3

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔΡ (βδί)	corrección		
3	1.00		
5	0.79		
7	0.67		
10	0.56		
15	0.47		
20	0.41		
30	0.35		
60	0.28		

Factor de corrección para temperatura de descarga (T_{des})

temperatura de descarga (10es)					
Temperatura descarga	Factor de corrección				
120°F	0.95				
140°F	0.97				
180°F	1.00				
200°F	1.02				
210°F	1.02				
230°F	1.04				
250°F	1.06				

Factor de corrección para temperatura de líquido (T_{lig})

temperatura de riquido (Tiiq)				
Temperatura de líquido	Factor de corrección			
ac ilquido	correction			
-10°F	0.73			
10°F	0.77			
30°F	0.82			
50°F	0.87			
70°F	0.93			
90°F	1.00			
110°F	1.09			
130°F	1.20			

Factor de corrección para presión de descarga (P_{des})

presion de desearga (1 des)		
P _{des} (psi)	Factor de corrección	
185	1.00	
240	0.87	
300	0.78	

Línea de descarga

Unidades SI

La tabla de capacidad está basada en los valores nominales, $Q_N[kW]$, $T_{liq} = 30$ °C, $P_{des} = 8 bar,$ $\Delta P = 0.2 \ bar$

 $T_{des} = 80$ °C

R 134a

Tipo	k,	Temperatura de evaporación T _e							
Про	m³/h	−50°C	−40°C	−30°C	−20°C	-10°C	0°C	10°C	20°C
PM 5	1.6	-	4.3	4.5	4.7	4.9	5.1	5.3	5.5
PM 10	3	-	8.1	8.5	8.9	9.2	9.6	10.0	10.3
PM 15	4	-	10.8	11.3	11.8	12.3	12.8	13.3	13.7
PM 20	7	-	18.9	19.8	20.7	21.6	22.4	23.2	24.0
PM 25	11.5	-	31.1	32.5	34.0	35.4	36.8	38.2	39.5
PM 32	17.2	-	46.5	48.7	50.9	53.0	55.1	57.1	59.0
PM 40	30	-	81.1	84.9	88.7	92.4	96.1	99.6	102.9
PM 50	43	-	116.2	121.7	127.2	132.5	137.7	142.7	147.6
PM 65	79	-	213.5	223.6	233.7	243.4	253.0	262.3	271.1
PM 80	141	-	381.1	399.1	417.1	434.4	451.6	468.1	483.9
PM 100	205	-	554.1	580.2	606.3	631.6	656.5	680.5	703.5
PM 125	329	-	889.2	931.2	973.1	1013.7	1053.6	1092.2	1129.0

Factor de corrección para $\Delta P (f_{\Delta P})$

ΔP (bar)	Factor de corrección	
0.2	1.00	
0.4	0.72	
0.6	0.59 0.52	
0.8		
1	0.46	
1.5	0.39	
2	0.34	
4	0.27	

Factor de corrección para

temperatura de descarga (I _{des})			
Temperatura	Factor de		
descarga	corrección		
50°C	0.96		
60°C	0.97		
80°C	1.00		
90°C	1.01		
100°C	1.03		
110°C	1.04		
120°C	1.06		

Factor de corrección para temperatura de líquido (T_{liq})

	- · I · · · · IIq/
Temperatura de líquido	Factor de corrección
−20°C	0.66
−10°C	0.70
0°C	0.76
10°C	0.82
20°C	0.90
30°C	1.00
40°C	1.13
50°C	1.29

Factor de corrección para presión de descarga (P_{des})

P _{des} (bar)	Factor de corrección
8	1.00
12	0.82
16	0.70
20	0.62

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración],

 $T_{liq} = 90$ °F, $\Delta P = 3 psi$

 $P_{des} = 120 \, psi$,

 $T_{des} = 180 \,^{\circ} F$

R 134a

T:	C _v	Temperatura de evaporación T _e							
Tipo	USgal/min	-60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	-	1.3	1.3	1.4	1.5	1.5	1.6	1.6
PM 10	3.5	-	2.4	2.5	2.6	2.7	2.8	3.0	3.1
PM 15	4.6	-	3.1	3.3	3.5	3.6	3.8	4.0	4.1
PM 20	8.1	-	5.5	5.8	6.1	6.4	6.6	6.9	7.2
PM 25	13.3	-	9.0	9.5	10.0	10.5	10.9	11.4	11.8
PM 32	20	-	13.5	14.3	15.0	15.7	16.3	17.0	17.6
PM 40	35	-	23.6	24.9	26.1	27.3	28.5	29.7	30.8
PM 50	50	-	33.8	35.6	37.4	39.2	40.8	42.6	44.1
PM 65	92	-	62.2	65.5	68.7	71.9	75.0	78.3	81.1
PM 80	164	-	110.9	116.9	122.7	128.4	133.9	139.7	144.7
PM 100	238	-	161.3	169.9	178.4	186.7	194.7	203.1	210.4
PM 125	382	-	258.8	272.7	286.3	299.6	312.5	326.0	337.6

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P (f_{\Delta P})$

20

30

60

oresión de descarga (P _{des})		
P _{des} (psi)	Factor de corrección	
120	1.00	
185	0.83	
240	0.71	
300	0.64	

Factor de corrección para

Factor de ΔP (psi) corrección 1.00 5 0.79 0.67 10 0.56 15 0.47

0.41

0.35

0.28

Factor de corrección para

temperatura de descarga (I _{des})			
Temperatura	Factor de		
descarga	corrección		
120°F	0.95		
140°F	0.97		
180°F	1.00		
200°F	1.02		
210°F	1.02		
230°F	1.04		
250°F	1.05		

Factor de corrección para temperatura de líquido (T_{lia})

temperatura de riquido (Tiq)				
Temperatura de líquido	Factor de corrección			
-10°F	0.64			
10°F	0.68			
30°F	0.74			
50°F	0.81			
70°F	0.89			
90°F	1.00			
110°F	1.15			
130°F	1.35			

RD4XA505 49 © Danfoss A/S (RC-CMS / MWA), 02 - 2005

Unidades SI

La tabla de capacidad está basada en los valores nominales, Q_N [kW],

 $T_{liq} = 30$ °C,

 $P_{des} = 12 bar$

 $\Delta P = 0.2 \ bar,$

 $T_{des} = 80 \, ^{\circ}\text{C}$

Factor de corrección para presión de descarga (P_{des})

P _{des} (bar)	Factor de corrección
12	1
16	0.87
20	0.78

R 404A

Tipo	k _v	Temperatura de evaporación T _e							
	m³/h	−50°C	-40°C	-30°C	-20°C	-10°C	0°C	10°C	20°C
PM 5	1.6	3.7	3.9	4.2	4.4	4.7	4.9	5.1	5.3
PM 10	3	6.9	7.4	7.8	8.3	8.8	9.2	9.6	9.9
PM 15	4	9.2	9.8	10.5	11.1	11.7	12.3	12.8	13.3
PM 20	7	16.0	17.2	18.3	19.4	20	21	22	23
PM 25	11.5	26	28	30	32	34	35	37	38
PM 32	17.2	39	42	45	48	50	53	55	57
PM 40	30	69	74	78	83	88	92	96	99
PM 50	43	99	106	112	119	126	132	138	143
PM 65	79	181	194	207	219	231	242	253	262
PM 80	141	323	346	369	391	412	432	451	468
PM 100	205	470	503	536	568	599	629	656	680
PM 125	329	754	807	860	912	962	1009	1052	1091

Factor de corrección para $\Delta P (f_{\Lambda P})$

ΔP (bar)	Factor de corrección
0.2	1.00
0.4	0.72
0.6	0.59
0.8	0.52
1	0.46
1.5	0.39
2	0.34
4	0.27

Factor de corrección para temperatura de descarga (T_{dos})

temperatura de descarga (T _{des})					
Temperatura	Factor de				
descarga	corrección				
50°C	0.96				
60°C	0.97				
80°C	1.00				
90°C	1.01				
100°C	1.03				
110°C	1.04				
120°C	1.06				

Factor de corrección para temperatura de líquido (T_{lig})

Línea de descarga

	i iiqi
Temperatura de líquido	Factor de corrección
-20°C	0.55
-10°C	0.60
0°C	0.66
10°C	0.74
20°C	0.85
30°C	1.00
40°C	1.23
50°C	1.68

Unidades US

La tabla de capacidad está basada en los valores nominales, Q_N [Toneladas de Refrigeración],

 $T_{liq} = 90$ °F, $\Delta P = 3$ psi,

 $P_{des} = 185 \text{ psi,}$ $T_{des} = 180 \text{°F}$

R 404A

1017									
Tipo	C _v	Temperatura de evaporación T _e							
Про	USgal/min	−60°F*	-40°F	-20°F	0°F	20°F	40°F	60°F	80°F
PM 5	1.9	1.0	1.1	1.2	1.3	1.3	1.4	1.5	1.5
PM 10	3.5	1.9	2.1	2.2	2.4	2.5	2.7	2.8	2.9
PM 15	4.6	2.6	2.8	3.0	3.2	3.4	3.5	3.7	3.9
PM 20	8.1	4.5	4.8	5.2	5.6	5.9	6.2	6.5	6.8
PM 25	13.3	7.4	8.0	8.6	9.1	9.7	10.2	10.7	11.1
PM 32	20	11.0	11.9	12.8	13.7	14.5	15.2	16.0	16.6
PM 40	35	19.2	21	22	24	25	27	28	29
PM 50	50	28	30	32	34	36	38	40	41
PM 65	92	51	55	59	63	66	70	73	76
PM 80	164	90	98	105	112	119	125	131	136
PM 100	238	131	142	152	163	173	182	191	198
PM 125	382	210	228	245	261	277	292	306	317

^{* 2°}F por debajo de la temperatura de funcionamiento mínima.

Factor de corrección para $\Delta P \; (f_{\Delta P})$

ΔP (psi)

Factor de corrección para			5	
presión de descarga (P _{des})			7	
Factor de			10	
P _{des} (psi)	corrección		15	
185	1		20	
240	0.87		30	
300	0.78		60	

Factor de corrección 1.00 0.79 0.67

0.56 0.47 0.41 0.35 0.28

Factor de corrección para temperatura de descarga (T_{des})

	J. Cuesi
Temperatura	Factor de
descarga	corrección
120°F	0.95
140°F	0.97
180°F	1.00
200°F	1.02
210°F	1.02
230°F	1.04
250°F	1.05

Factor de corrección para temperatura de líquido (T_{lia})

terriperatara ae rigarao (Tilig)				
Temperatura de líquido	Factor de corrección			
-10°F	0.52			
10°F	0.57			
30°F	0.63			
50°F	0.72			
70°F	0.83			
90°F	1.00			
110°F	1.29			
130°F	1.92			

© Danfoss A/S (RC-CMS / MWA), 02 - 2005 RD4XA505 51

Folleto técnico

Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos o cualquier otro material impreso, reservándose el derecho de alterar sus productos sin previo aviso, incluyéndose los que estén bajo pedido, si estas modificaciones no afectan las características convenidas con el cliente. Todas las marcas comerciales de este material son propiedad de las respectivas compañías. Danfoss y el logotipo Danfoss son marcas comerciales de Danfoss A/S. Reservados todos los derechos.

52 RD4XA505 © Danfoss A/S (RC-CMS / MWA), 02 - 2005