|  | Section Mgr. | Design Eng. |
| :---: | :---: | :---: |
| APPROVALS: |  | H.Ogi |

# MITSUBISHI 

General Purpose AC Servo
MELSERVO-J2S-S099
Equivalent to CC-Link with index advance and retard Specifications and Instruction Manual

## For Engineering Sample

## Table of Contents

1. FUNCTION AND CONFIGURATION ..... 2
1.1 Overview ..... 2
2. STANDARD SPECIFICATIONS ..... 3
2.1 Servo amplifier standard specifications ..... 3
3. BLOCK DIAGRAM ..... 4
4. CC-LINK COMMUNICATION FUNCTIONS ..... 5
4.1 Communication specifications ..... 5
4.2 System configuration ..... 6
4.3 Functions ..... 11
4.4 Servo amplifier setting ..... 12
4.5 I/O Signals transferred to/from the PLC CPU ..... 13
4.6 Data communication timing charts ..... 34
5. STANDARD CONNECTION EXAMPLE ..... 41
6. I/O SIGNALS ..... 43
6.1 Signal explanations ..... 43
6.2 Additional function devices ..... 45
6.3 Detailed description of the signals ..... 48
7. INTERFACES ..... 54
8. POWER SUPPLY SYSTEM CIRCUIT ..... 56
8.1 Connection example ..... 56
8.2 Terminals ..... 57
8.3 Power-on sequence ..... 58
9. DISPLAY AND OPERATION ..... 59
9.1 Display flowchart ..... 59
10. PARAMETERS ..... 60
11. TROUBLESHOOTING ..... 80
11.1 Alarms and warning list ..... 80
11.2 Operation performed at alarm/warning occurrence ..... 81
11.3 CC-Link communication alarm ..... 82

## 1. Functions and Configuration

### 1.1 Overview

The MR-J 2S-םロCP-S099 servo amplifier connects with CC-Link via MR-J 2S-T01 CC-Link interface unit. Up to 42 axes of servo amplifiers can be controlled/monitored from the PLC side.
The MR-J 2S-प—CP-S099 servo amplifier having index advance and retard function allows you to perform positioning operation by merely setting the indexing data, motor speeds, acceleration/deceleration time constants, etc. in point blocks (position blocks, speed blocks) like making parameter setting. It is the most appropriate for you to configure up a simple positioning system without programs or simplify your system.

## <Functions added to standard product>

- Synchronous control function with pulse train input.
- Encoder A/B phase output function.
<Functions eliminated from standard product>
- Absolute value, Incremental value command system.
- Manual pulse generator operation.
- Zeroing function.
- Absolute position detection system.
- Follow-up for absolute value command in incremental system.
- Override, torque limit offset function.
- Rough match signal output.
- Position range output
- S-pattern acceleration / deceleration filter.
- Software stroke limit function.
- Gain changing function


## 2. Standard specifications

### 2.1 Servo amplifier standard specifications

|  |  | $\begin{array}{r} \mathrm{Se} \\ \mathrm{MR}-\mathrm{J} 2 \mathrm{~S} \\ \hline \end{array}$ | mplifier -S099 | 10 | 20 | 40 | 60 | 70 | 100 | 200 | 350 | 500 | 700 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \lambda \\ & \frac{\grave{0}}{0} \\ & \bar{n} \\ & \hat{0} \\ & \stackrel{0}{0} \\ & 0 . \end{aligned}$ | Voltage/frequency |  |  | 3-phase 200 to $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ or 1-phase 230VAC, 50/60Hz |  |  |  |  | 3-phase 200 to 230VAC, 50/60Hz |  |  |  |  |
|  | Permissible voltage fluctuation |  |  | $\begin{gathered} \text { 3-phase } 200 \text { to } 230 \mathrm{VAC}: \\ 170 \text { to } 253 \mathrm{VAC} \\ \text { 1-phase } 230 \mathrm{VAC}: 207 \text { to } 253 \mathrm{VAC} \end{gathered}$ |  |  |  |  | 3-phase 170 to 253VAC |  |  |  |  |
|  | Permissible frequency fluctuation |  |  | Within $\pm 5 \%$ |  |  |  |  |  |  |  |  |  |
|  | Power supply capacity |  |  | Refer to Section12.2 |  |  |  |  |  |  |  |  |  |
| System |  |  |  | Sine-wave PWM control, current control system |  |  |  |  |  |  |  |  |  |
| Dynamic brake |  |  |  | Built-in |  |  |  |  |  |  |  |  |  |
| Protective functions |  |  |  | Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic thermal relay), servo motor overheat protection, encoder error protection, regenerative brake error protection, undervoltage, instantaneous power failure protection, overspeed protection, excessive error protection |  |  |  |  |  |  |  |  |  |
| Structure |  |  |  | Self-cooled, open (IP00) |  |  |  |  |  | Force-cooling, open (IP00) |  |  |  |
|  | Ambient temperature | Operation | $\left[{ }^{\circ} \mathrm{C}\right]$ | 0 to +55 (non-freezing) |  |  |  |  |  |  |  |  |  |
|  |  |  | [ $\left.{ }^{\circ} \mathrm{F}\right]$ | 32 to +131 (non-freezing) |  |  |  |  |  |  |  |  |  |
|  |  | Storage | $\left[{ }^{\circ} \mathrm{C}\right]$ | -20 to +65 (non-freezing) |  |  |  |  |  |  |  |  |  |
|  |  |  | [ $\left.{ }^{\circ} \mathrm{F}\right]$ | -4 to +149 (non-freezing) |  |  |  |  |  |  |  |  |  |
|  | Ambient humidity | Operation |  | 90\%RH or less (non-condensing) |  |  |  |  |  |  |  |  |  |
|  |  | Storage |  |  |  |  |  |  |  |  |  |  |  |
|  | Ambient |  |  | Indoors (no direct sunlight) <br> Free from corrosive gas, flammable gas, oil mist, dust and dirt |  |  |  |  |  |  |  |  |  |
|  | Altitude |  |  | Max. 1000m (3280ft) above sea level |  |  |  |  |  |  |  |  |  |
| Vibration |  |  |  | $5.9\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ or less |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 9.4 [ft/ | or les |  |  |  |  |
| Weight |  |  | [kg] | 0.7 | 0.7 | 1.1 | 1.1 | 1.7 | 1.7 | 2.0 | 2.0 | 4.9 | 7.2 |
|  |  |  | [lb] | 1.5 | 1.5 | 2.4 | 2.4 | 3.75 | 3.75 | 4.4 | 4.4 | 10.8 | 15.87 |

## 3. Block Diagram



## 4. CC-LINK Communication Functions

### 4.1 Communication specifications

POINT

- The MR-J 2S-T01 option module is equivalent to a remote device station.

For details of the PLC side specifications, refer to the CC-Link system master module manual.

| Item |  |  |  | Specifications |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Applicable CPU card |  |  | QnA(H), QnAS(H), A1S, AlSH, AnUS(H), AnN, AnA, AnU(H) |  |  |  |  |  |  |  |
|  | Communication speed |  |  | 10M/5M/2.5M/625k/156kbps |  |  |  |  |  |  |  |
|  | Communication system |  |  | Broadcast polling system |  |  |  |  |  |  |  |
|  | Synchronization system |  |  | Frame synchronization system |  |  |  |  |  |  |  |
|  | Transmission path format |  |  | Bus format (conforming to EIA RS485) |  |  |  |  |  |  |  |
|  | Transmission format |  |  | Conforming to HDLC |  |  |  |  |  |  |  |
|  | Remote station number |  |  | 1 to 64 |  |  |  |  |  |  |  |
|  | (Note) Max. transmission distance | Communication <br> speed $[b p s]$ |  | 156K | 625K | 2.5M | 5M |  | 10M |  |  |
|  |  | Overall dista | ce [ft] | 3937 | 1969 | 656 | 492 | 360 | 328 | 262 | 164 |
|  |  | Interstation distance | Between master/local station and preceding/ subsequent station | 6.557 ft . or more |  |  |  |  |  |  |  |
|  |  |  | Between remote I/O stations/ remote device stations | $\begin{aligned} & \text { 11in } \\ & \text { or } \\ & \text { more } \end{aligned}$ | $\begin{aligned} & \text { 11in } \\ & \text { or } \\ & \text { more } \end{aligned}$ | $\begin{aligned} & \text { 11in } \\ & \text { or } \end{aligned}$ | $\begin{gathered} \text { 23in } \\ \text { or } \end{gathered}$ more | $\begin{gathered} \text { 11in } \\ \text { to } \\ \text { 23in } \end{gathered}$ | 39in or more | $\begin{gathered} 23 \text { in } \\ \text { to } \\ 39 \text { in } \end{gathered}$ | $\begin{gathered} \text { 11in } \\ \text { to } \\ 23 \text { in } \end{gathered}$ |
|  | Error control system |  |  | CRC |  |  |  |  |  |  |  |
|  | Connection cable |  |  | Twisted pair cable (3-wire type) |  |  |  |  |  |  |  |
|  | Adaptable servo amplifier for CC-Link |  |  | MR-J 2S-पA-S084 |  |  |  |  |  |  |  |
|  | Power supply to CC-Link option unit |  |  | 5 Vdc from the servo amplifier |  |  |  |  |  |  |  |
|  | Number of servo amplifiers connected |  |  | Max. 42 nodes (In case of 1 station) |  |  |  |  |  |  |  |

### 4.2 System configuration

### 4.2.1 Configuration example

(1) PLC side

Fit "Type AJ 61BT11", "Type A1SJ 61BT", "Type AJ 61QBT11" or "Type A1SJ 61QBT" "Control \& Communication Link system master/local module" to the main or extension base unit which is loaded with the PLC CPU used as the master station.
(2) Wiring

Connect the PLC CC-Link module master station and servo amplifier by a twisted pair cable (3-wire type).
(3) For the CPU having the automatic refresh function (Example: QnA series CPU)

Transfer of data to/from the corresponding devices is performed from a sequence ladder and the devices are automatically refreshed by the refresh buffer of the master station at the END instruction to make communications with the remote devices.
(4) For the CPU having no automatic refresh function (Example: AnA series CPU)

Transfer of data to/from the refresh buffer of the master station is performed directly from a sequence ladder to make communications with the remote devices.

### 4.2.2 Wiring method

(1) Connection example

The MR-J 2S-T01 CC-Link option unit with MR-J 2S-■CP-S099 Servo amplifier and PLC CC-Link master module are wired as shown below.

(2) Example of connecting multiple servo units As the remote I/O stations of CC-Link, servo amplifiers share the link system and can be controlled/monitored using PLC user programs.


Note 1. Use the termination resistor supplied with the PLC. The resistance of the termination resistor depends on the cable used. For details, refer to the open field network CC-Link catalog (L(NA)74108143).
(3) How to wire the CC-Link terminal block (CN10)
(a) Strip the sheath of the cable and separate the internal wires and braided shield.
(b) Strip the sheaths of the braided shield and internal wires and twist the cores.

(c) Match and twist the wires and braided shield of the cable connected to the preceding axis or PLC and the corresponding wires and braided shield of the cable connected to the subsequent axis.
(d) F or the last axis, work the termination resistor supplied to the CC-Link module as shown below.

(e) Insert the core of the cable into the opening and tighten it with a flat-blade screwdriver so that it will not come off. (Tightening torque: 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ ) When inserting the wire into the opening, make sure that the terminal screw is fully loose.


### 4.2.3 Station number setting

(1) How to number the stations

Set the servo station numbers before powering on the servo amplifiers. Note the following points when setting the station numbers:
(a) Station numbers may be set within the range 1 to 64 .
(b) One servo amplifier occupies 1 or 2 stations. (One station of PLC remote device station)
(c) Max. number of connected units: 42

Note that the following conditions must be satisfied:
$\{(1 \times \mathrm{a})+(2 \times \mathrm{B})+(3 \times \mathrm{d})+(4 \times \mathrm{d})\} \leq 64$
a: Number of 1 -station occupying units
b: Number of 2-station occupying units
c: Number of 3-station occupying units (not available for MR-J 2S-T01)
d: Number of 4-station occupying units (not available for MR-J 2S-T01)
$\{(16 \times$ A $)+(54 \times$ B $)+(88 \times$ C $)\} \leq 2304$
A: Number of remote I/O stations $\leq 64$
B: Number of remote device stations $\leq 42$
C: Number of local stations $\leq 26$
(d) When the number of units connected is 4, station numbers can be set as shown below:


Number of connected units is 4 .
(2) Station number setting method

Set the station number with the station number switches (SW1, SW2) on the servo amplifier front. The station number that may be set is any of 1 to 64 in dedimal. In the initial status, the station number is set to station 1 .


Set the tens. (initial value: 0)


Set the units. (initial value: 1)

### 4.2.4 Communication baudrate setting

Set the transfer baudrate of CC-Link with the transfer baudrate switch (SW3) on the servo amplifier front. The initial value is set to 156 kbps .
The overall distance of the system changes with the transfer speed setting. For details, refer to the CCLink system master/local module user's manual.


| No. | Baudrate |
| :---: | :---: |
| 0 (initial value) | 156 kbps |
| 1 | 625 kbps |
| 2 | 2.5 Mbps |
| 3 | 5 Mbps |
| 4 | 10 Mbps |
| 5 to 9 | Not used |

### 4.2.5 Occupied station count setting

Set the number of occupied stations with the occupied station count switch (SW1,SW2) on the servo amplifier front. The usablel/O signals and the number of connectable units change with the set number of occupied stations. In the initial status, the number of stations occupied is set to 1 .

| SW1,SW2 setting | Number of occupied stations |
| :---: | :---: |
|  | 1 station occupied |
|  | 2 stations occupied |

### 4.3 Functions

### 4.3.1 Function block diagram

This section explains the transfer of I/O data to/from the servo amplifier in PLC link, using function blocks.
(1) Between the master station and servo amplifier in the CC-Link system, link refresh is normally performed at intervals of 3.5 to 18 ms ( 512 points). The link scan time of link refresh changes with the communication speed. F or details, refer to the CC-Link system master/local module user's manual.
(2) The I/O refresh and master station sequence program are executed asynchronously. Some PLCs allow link scans to be synchronized with PLC scans.
(3) The FROM instruction from the buffer memory of the CC-Link system master/local module is used to read data from the servo amplifier, and the TO instruction is used to write data. Some PLCs allow automatic refresh to be set to omit the FROM and TO instructions.


### 4.3.2 Functions

The following table lists the functions that may be performed from the PLC in the CC-Link system in the CCLink operation mode or parameter unit test operation mode.

| Item | Operation mode |  |
| :---: | :---: | :---: |
|  | CC-Link operation mode | Parameter unit test operation mode |
| Monitor | $\bigcirc$ | $\bigcirc$ |
| Operation | $\bigcirc$ |  |
| Parameter write | $\bigcirc$ | $\bigcirc$ |
| Parameter read | $\bigcirc$ | $\bigcirc$ |
| Position block data write | $\bigcirc$ | $\bigcirc$ |
| Position block data read | $\bigcirc$ | $\bigcirc$ |

### 4.4 Servo amplifier setting

### 4.4.1 Servo amplifier side operation modes

The MR-J 2S-T01 with MR-J 2S-■CP-S099 has the following operation modes:

| Operation mode | Description |
| :--- | :--- |
| CC-Link operation mode | CC-Link communication functions are used to operate the servo with the PLC programs. |
| Test operation mod | The configuration S/W or push button on the front panel in the servo amplifier is <br> operated to test-run the servo. |

### 4.4.2 Operation mode changing

(1) Operation mode changing conditions

Change the operation mode after making sure that:
(a) The servo motor is at a stop.
(b) The forward rotation start ( $R Y n 1$ ) or reverse rotation start ( $R Y n 2$ ) is " 0 " (OFF ).
(2) Operation mode changing method

Change with parameter unit


| Symbol | Changing | Description |
| :---: | :---: | :--- |
| A | CC-Link operation mode <br> $\downarrow$ <br> $\downarrow$ <br> Test operation mode | Select the test operation mode via configuration <br> S/W or use push button on the front panel. |
| B | Test operation mode <br> $\downarrow$ | Deselect the test operation mode via configuration <br> S/W or use push button on the front panel |

### 4.5 I/O Signals transferred to/from the PLC CPU

### 4.5.1 I/O signals

(1) Positioning system

The input signals may be used as either the CC-Link or CN1 external input signals. Make selection in parameter No. $116,117,118$. The output signals can be used as both the CC-Link and CN1 external input signals.
(a) When 1 station is occupied

RX/RY: 32 points each, RWRw: 4 points each

| PLC $\rightarrow$ Servo amplifier (RY) |  |
| :---: | :--- |
| Device No. | Signal name |
| RYn0 | Servo on |
| RYn1 | F orward rotation start |
| RYn2 | Reverse rotation start |
| RYn3 | RESERVED |
| RYn4 | Forward rotation stroke end |
| RYn5 | Reverse rotation stroke end |
| RYn6 | Automatic operation / manual drive mode |
| RYn7 | Temporary stop / Restart |
| RYn8 | Monitor output execution demand |
| RYn9 | Instruction code execution demand |
| RYnA | Position block number selection bit0 |
| RYnB | Position block number selection bit1 |
| RYnC | Position block number selection bit2 |
| RYnD | Position block number selection bit3 |
| RYnE | Position block number selection bit4 |
| RYnF | Synchronous operation start |
| RY (n+1)0 |  |
| to | RESERVED |
| RY (n+1)9 |  |
| RY (n+1)A | Reset |
| RY (n+1)Bto  <br> RY (n+1)F RESERVED |  |


| Servo amplifier $\rightarrow$ PLC (RX) |  |
| :--- | :--- |
| Device No. |  |
| RXn0 | Ready |
| RXn1 | In position |
| RXn2 | Rough match |
| RXn3 | RESERVED |
| RXn4 | Limiting torque |
| RXn5 | Overlapping completion |
| RXn6 | Electromagnetic brake interlock |
| RXn7 | Temporary stopping |
| RXn8 | Monitoring |
| RXn9 | Instruction code execution completion |
| RXnA | Warning |
| RXnB | REASERVED |
| RXnC | Moving complete |
| RXnD | Dynamic break interlock |
| RXnE | Position range |
| RXnF | Synchronous completion |
| RX(n+1)0 |  |
| to | RESERVED |
| RX(n+1)9 |  |
| RX(n+1)A | Trouble |
| RX(n+1)C  <br> to  <br> RX(n+1)F Remote bureau communication ready | RESERVED |


| PLC $\rightarrow$ Servo amplifier (RWw) |  |
| :---: | :--- |
| Address No. |  |
| RWWn | Monitor 1 |
| RWWnal name |  |
| RWWn+2 | Monitor 2 |
| RWWn+3 | Instruction code |


| Servo amplifier $\rightarrow$ PLC $($ RWR $)$ |  |  |
| :---: | :--- | :---: |
| Address No. | Signal name |  |
| RWRn | M onitor 1 data |  |
| RWRn +1 | M onitor 2 data |  |
| RWRn+2 | Answer code |  |
| RWRn+3 | Reading data |  |

Note1: Following signals can be used as the external I/O only.

1) Servo emergency stop signal (DI: EMG)
2) Encoder feedback pulses output (DO: open collector and line driver)

Note2: "n" depends on the station number.
(b) When 2 stations are occupied

RX/RY: 32 points each (possible to extend to 64 points), RW $W_{\text {Rw: }} 8$ points each

| PLC $\rightarrow$ Servo amplifier (RY) |  |
| :---: | :---: |
| Device No. | Signal name |
| RYn0 | Servo on |
| RYn1 | F orward rotation start |
| RYn2 | Reverse rotation start |
| RYn3 | RESERVED |
| RY n4 | F orward rotation stroke end |
| RY n5 | Reverse rotation stroke end |
| RYn6 | Automatic operation / manual drive mode |
| RYn7 | Temporary stop |
| RYn8 | M onitor output execution demand |
| RYn9 | Instruction code execution demand |
| RYnA | Position block number selection bit0 |
| RYnB | Position block number selection bit1 |
|  | Position block number selection bit2 |
| RYnD | Position block number selection bit3 |
| RYnE | Position block number selection bit4 |
| RYnF | Synchronous operation start |
| $\begin{gathered} \mathrm{RY}(\mathrm{n}+1) 0 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+1) \mathrm{F} \\ \hline \end{gathered}$ | RESERVED |
| $R Y(n+2) 0$ | Position instruction demand Note 1 |
| RY ( $\mathrm{n}+2$ )1 | Speed instruction demand Note 1 |
| $\mathrm{RY}(\mathrm{n}+2) 2$ | RESERVED |
| RY ( $\mathrm{n}+2$ )3 |  |
| RY ( $\mathrm{n}+2$ )4 |  |
| RY ( $\mathrm{n}+2$ )5 |  |
| RY ( $\mathrm{n}+2$ )6 | Internal torque limit (second selection) |
| RY ( $\mathrm{n}+2$ ) 7 | Proportion control |
| RY ( $\mathrm{n}+2$ )8 | RESERVED |
| RY ( $\mathrm{n}+2$ ) 9 |  |
| $R Y(n+2) A$ | Point block / Position instruction changing |
| $R Y(n+2) B$ | Absolute/ Incremental selection in direct position instruction mode |
| $\begin{gathered} \mathrm{RY}(\mathrm{n}+2) \mathrm{C} \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+2) \mathrm{F} \\ \hline \end{gathered}$ | RESERVED |
| $\begin{gathered} \mathrm{RY}(\mathrm{n}+3) 0 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+3) 9 \\ \hline \end{gathered}$ | RESERVED |
| $R Y(n+3) A$ | Reset |
| $\begin{gathered} R Y(n+3) B \\ \text { to } \\ R Y(n+3) F \end{gathered}$ | RESERVED |


| Servo amplifier $\rightarrow$ PLC (RX) |  |
| :---: | :---: |
| Device No. | Signal name |
| RXn0 | Ready |
| RXn1 | In position |
| RXn2 | Rough match |
| RXn3 | RESERVED |
| RXn4 | Limiting torque |
| RXn5 | Overlapping completion |
| RXn6 | Electromagnetic brake interlock |
| RXn7 | Temporary stopping |
| RXn8 | Monitoring |
| RXn9 | Instruction code execution completion |
| RxnA | Warning |
| RXnB | RESERVED |
| RXnC | Moving complete |
| RXnD | Dynamic brake inter lock |
| RynE | Position range output |
| RXnF | Synchronous completion |
| $\begin{gathered} \mathrm{RX}(\mathrm{n}+1) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+1) \mathrm{F} \\ \hline \end{gathered}$ | RESERVED |
| RX( $\mathrm{n}+2) 0$ | Position instruction execution completion |
| RX( $\mathrm{n}+2) 1$ | Speed instruction execution completion |
| RX( $\mathrm{n}+2) 2$ | Point block No. output bit 0 |
| RX( $\mathrm{n}+2) 3$ | Point block No. output bit 1 |
| RX( $\mathrm{n}+2$ ) 4 | Point block No. output bit 2 |
| $\mathrm{RY}(\mathrm{n}+2) 5$ | Point block No. output bit 3 |
| $\mathrm{RX}(\mathrm{n}+2) 6$ | Point block No. output bit 4 |
| RX( $\mathrm{n}+2) 7$ | RESERVED |
| RX( $\mathrm{n}+\mathrm{l}^{\text {8 }}$ |  |
| RX( $\mathrm{n}+2) 9$ |  |
| RX( $\mathrm{n}+2) \mathrm{A}$ |  |
| $R X(n+2) B$ |  |
| $\begin{gathered} \mathrm{RX}(\mathrm{n}+2) \mathrm{C} \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+2) \mathrm{F} \\ \hline \end{gathered}$ |  |
| $\begin{gathered} \hline \mathrm{RX}(\mathrm{n}+3) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+3) 9 \\ \hline \end{gathered}$ | RESERVED |
| RX( $\mathrm{n}+3$ ) A | Trouble |
| RX( $n+3$ ) B | Remote bureau communication ready |
| $\begin{gathered} \mathrm{RX}(\mathrm{n}+3) \mathrm{C} \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+3) \mathrm{F} \\ \hline \end{gathered}$ | RESERVED |

Note 1: Select the instruction mode at parameter \# 41.
Note 2: " n " depends on the station number.

| PLC $\rightarrow$ Servo amplifier (RWw) |  |  |  |
| :---: | :--- | :--- | :---: |
| Address No. | Signal name |  |  |
| RWWn | Monitor 1 | Note 1 |  |
| RWWn+1 | Monitor 2 | Note 1 |  |
| RWWn+2 | Instruction code |  |  |
| RWWn+3 | Writing data |  |  |
| RWWn+4 | Position block No./P osition instruction data under <br> 16bit | Note 2 |  |
| RWWn+5 | Position instruction data upper 16bit |  |  |
| RWWn+6 | Speed block No./Speed instruction data | Note 3 |  |
| RWWn+7 | Reserved |  |  |


| Servo amplifier $\rightarrow$ PLC (RWR) |  |
| :---: | :--- |
| Address No. | Signal name |
| RWRn | M onitor 1 data under 16bit |
| RWRn+1 | Monitor 1 data upper 16bit |
| RWRn+2 | Answer code |
| RWRn+3 | Reading data |
| RWRn+4 | Reserved |
| RWRn+5 | Monitor 2 data under 16bit |
| RWRn+6 | Monitor 2 data upper 16bit |
| $R W_{R n+7}$ | Reserved |

Note 1: Sets the lower 16bit in case of 32bit data code.
Note 2: Sets the point table \# at RWwn +4 in case the parameter \#41 is $\square \square \square 0$. Set the point data at RWwn +4 and $R W w n+5$ in case the parameter \#41 is पロप1 and $\square \square \square 2$. Then turn on the position instruction demand signal $(\mathrm{RY}(\mathrm{n}+2) 0)$.
Note 3: Sets the point table \# at RWwn+6 in case the parameter \#41 is $\square \square \square 1$, Sets the speed data in case the parameter \#41 is
 ㅁㅁㅁ.
Note 4: "n" depends on the station number.
(1) Input signals

| Signal name | Description |  |  |  | Device \# |  | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1 station occupied | 2 stations occupied |  |
| Servo on | Turning RY0 to " 1 " (ON) powers on the base circuit, making operation ready to start. <br> Turning it to " 0 " (OFF) powers off the base circuit, coasting the servo motor. |  |  |  | RYn0 | RYn0 | 1 |
| Forward rotation start | In incremental value command system <br> Turning this signal to " 1 " (ON) in the automatic operation mode starts forward rotation. <br> Turning this signal to " 1 " (ON ) in the zeroing mode starts zeroing. <br> Turning this signal to " 1 " (ON) in the J OG operation mode performs forward rotation while it is shorted. <br> Turning this signal from " 0 " (OFF) to " 1 " (ON) during a temporary stop resumes operation over the remaining distance. <br> Forward rotation indicates the address increasing direction. |  |  |  | RYn1 | RYn1 | 1 |
| Reverse rotation start | In absolute value command system <br> Turning this signal to " 1 " (ON) in the automatic operation mode starts operation. <br> Turning this signal to " 1 " (ON ) in the zeroing mode starts zeroing. <br> Turning this signal to " 1 " (ON) in the J OG operation mode performs forward rotation while it is shorted. <br> Turning this signal from " 0 " (OFF) to " 1 " (ON) during a temporary stop resumes operation over the remaining distance. <br> Forward rotation indicates the address increasing direction. |  |  |  | RYn2 | RYn2 | 1 |
| Forward rotation stroke end | In the factory-shipped status, the forward rotation stroke end is valid as the external input signal (CN1B-16) and the reverse rotation stroke end is valid as the external input signal (CN1B-17). <br> When starting operation, short CN1B-16 - SG and CN1B-17 - SG. Opening them causes a sudden stop, resulting in servo lock. <br> For use in CC-Link, make it usable in parameter No. 116 (bit 4 and bit 5). <br> When starting operation, turn RY4/RY5 to " 1 " (ON ). Turning it to " 0 " (OFF) causes a sudden stop, resulting in servo lock. |  |  |  | RYn4 | RYn4 | 1 |
| Reverse rotation stroke end | When not using the forwa ON internally" in parame | reverse <br> No. 84 <br> t signal <br> RYn5 <br> 1 <br> 1 <br> 0 <br> 0 | tation stroke e | set "Automatic | RYn5 | RYn5 | 1,2 |
| Automatic operation/ Manual drive mode | 0: Manual drive mode <br> 1: Automatic operation |  |  |  | PYn6 | PYn6 | 1,2 |

Note1: These signals may be used as either the CC-Link or CN1A/CN1B external input signals. Make selection in parameter No. 116 to 118.

Note2: No need of external wiring when automatic turn on function was enabled in parameter No. 84 to 86.

| Signal name | Description |  |  |  |  |  | Device \# |  | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 1 station occupied | 2 stations occupied |  |
| $\begin{aligned} & \text { Temporary } \\ & \text { stop } \end{aligned}$ | Turning RY7 from " 0 " (OFF) to " 1 " (ON) and keeping it in that status for longer than 5 ms suspends operation. Turning the start signal RY1 or RY2 from " 0 " (OFF) to " 1 " (ON) again resumes operation from where it stopped. |  |  |  |  |  | RYn7 | RYn7 | 1 |
| Monitor output execution demand | Turning RY8 to " 1 " (ON) sets the following data/signals. At the same time, RX8 turns to " 1 " (ON). While RY8 is " 1 " (ON ), the monitor values are always updated. <br> 1) When 1 station is occupied <br> Remote register RWRn: Data requested by monitor 1 ( $R W_{W n}$ ) <br> Remote register RW $W_{n+1}$ : Data requested by monitor 2 ( $\mathrm{RW}_{\mathrm{Wn}+1}$ ) <br> Remote register RW ${ }_{\text {Rn }+2 \text { : }}$ Normal or error answer code <br> 2) When 2 stations are occupied <br> Remote register RWRn: Lower 16 bits of data requested by monitor 1 (RWWn) <br> Remote register RW $\mathrm{R}_{\mathrm{Rn}+1}$ : U pper 16 bits of data requested by monitor 1 (RWWn) <br> Remote register RWRn+5: Lower 16 bits of data requested by monitor 2 (RWWn+2) <br> Remote register RWRn+6: Upper 16 bits of data requested by monitor 2 (RWWn+2) <br> Remote register RW ${ }_{\mathrm{Rn}+2}$ : Normal or error answer code |  |  |  |  |  | RYn8 | RYn8 |  |
| Instruction code execution demand | Turning RY9 to "1" (ON) executes the processing corresponding to the instruction code set to the remote register RWwn+2. <br> After completion of instruction code execution, a normal or error answer code is set to RW ${ }_{\mathrm{Rn}+2 \text {. At the same time, RXD turns to " } 1 \text { " (ON). }}^{\text {. }}$ |  |  |  |  |  | RYn9 | RYn9 |  |
| Position block \# selection (bit0) | RYnA, RYnB, RYnC, RynD and RYnE are combined to choose the position table \#. Total point table number are up to 31 points. |  |  |  |  |  | RY nA | RYnA | 1,2 |
| Position block \# selection (bit1) | Point table\# | RYnE | RYnD | RYnC | RYnB | RYnA | RY nB | RYnB | 1,2 |
|  | 1 | 0 | 0 | 0 | 0 | 1 |  |  |  |
|  | 2 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| Position block \# selection (bit2) | 3 | 0 | 0 | 0 | 1 | 1 | RY nC | RYnC | 1,2 |
|  | 4 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| Position block \# selection (bit3) | : | : | : | : | : | : | RYnD | RYnD | 1,2 |
|  | 29 | 1 | 1 | 1 | 0 | 1 |  |  |  |
|  | 30 | 1 | 1 | 1 | 1 | 0 |  |  |  |
| Position block \# selection (bit4) | 31 | 1 | 1 | 1 | 1 | 1 | RYnE | RYnE | 1,2 |
| Synchronous operation start | Turning RYF to " 1 " (ON) executes the processing synchronous operation. |  |  |  |  |  | RYnF | RYnF |  |
| Reset | Keeping this signal " 1 " (ON) for longer than 20ms deactivates any of the following alarms. The base circuit is off while the signal is " 1 " (ON). |  |  |  |  |  | $R Y(n+1) A$ | $R Y(n+3) A$ | 1 |
|  | Indication |  |  | Indication | Name |  |  |  |  |
|  | AL. 10 | Under v |  | AL. 45 | Main circu |  |  |  |  |
|  | AL. 24 | Ground |  |  | device over |  |  |  |  |
|  | AL. 31 | Over spe |  | AL. 46 | Servo moto |  |  |  |  |
|  | AL. 32 | Over curr |  |  | overheat |  |  |  |  |
|  | AL. 33 | Over vol |  | AL. 52 | Error exces |  |  |  |  |
|  | AL. 35 | Command pulse frequency alarm |  | AL.8D | CC-Link al | m |  |  |  |
|  |  |  |  | AL.8E | RS-232C a |  |  |  |  |
|  | AL. 42 | Feedback | alarm | AL.8F | RS-422 ala |  |  |  |  |

Note1: These signals may be used as either the CC-Link or CN1A/CN1B external input signals. Make selection in parameter No. 116 to 118.

Note2: No need of external wiring when automatic turn on function was enabled in parameter No. 84 to 86.

| Signal name | Description | Device \＃ |  | Note |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 station occupied | 2 stations occupied |  |
| Position instruction demand | In case of＂ロロロ 0＂in parameter No．41： <br> Turning RY（ $n+2$ ）to＂ 1 ＂（ON）sets the position block No．set to the remote register RWwn＋4． <br> In case of＂ㅁㅁㅁ 1 ＂or＂ㅁㅁㅁㄹ＂in parameter No．41： <br> Turning RY（ $\mathrm{n}+2$ ）to＂ 1 ＂（ ON ）sets the position command data set to the remote register $R W_{W_{n}+4} / R W_{W_{n}+5}$ ． <br> When it is set to the servo amplifier，the normal or error answer code is set to RW $W_{\text {R2 }}$ ．At the same time，$R X(n+2) 0$ turns to＂ 1 ＂（ON）． <br> The registered data will be enabled at next automatic operation． |  | RY（ $\mathrm{n}+2$ ） 0 |  |
| Speed instruction demand | In case of＂$\square$ प० 0 ＂in parameter No．41： <br> This function will be disabled． <br> In case of＂ㅁㅁㅁㅁ＂in parameter No．41： <br> Turning RY（ $\mathrm{n}+2$ ） 1 to＂ 1 ＂（ON）sets the position block No．set to the remote register RWwn＋6． <br> In case of＂$\square$ ㅁㅁㄴ＂in parameter No．41： <br> Turning RY（ $\mathrm{n}+2) 1$ to＂ 1 ＂（ON）sets the speed command data set to the remote register RWwn＋6． <br> When it is set to the servo amplifier，the normal or error answer code is set to RW $W_{\text {R2 }}$ ．At the same time，$R X(n+2) 1$ turns to＂ 1 ＂（ON）． <br> The registered data will be enabled at next automatic operation． |  | RY（ $\mathrm{n}+2$ ）1 |  |
| Internal torque limit selection | O（OFF）：Depends on the setting in parameter No． 28. 1（ON）：Depends on the setting in parameter No． 29. |  | RY（n＋2）6 | 1 |
| Proportional control | O（OFF）：Proportional－I ntegral control will be selected． 1（ON）：Proportional control will be selected． |  | RY（ $\mathrm{n}+2$ ） 7 | 1，2 |
| Point block／ Position instruction changing selection | O（OFF）：Point block mode <br> 1（ON）：Direct position instruction mode |  | $\mathrm{RY}(\mathrm{n}+2) \mathrm{A}$ |  |
| Position direct command selection （Absolute／ Incremental） | O（OFF）：Absolute <br> 1（ON）：Incremental <br> This function will be enabled when parameter No． 0 sets＂ロロם1＂and parameter No． 2 sets＂1ロロロ＂are selected． |  | $\mathrm{RY}(\mathrm{n}+2) \mathrm{B}$ | 1 |

Note1：These signals may be used as either the CC－Link or CN1A／CN1B external input signals．Make selection in parameter No． 116 to 118.

Note2：No need of external wiring when automatic turn on function was enabled in parameter No． 84 to 86 ．
(b) Output signals

The device number whose Device No. field has an oblique line cannot be used in CC-Link.

| Signal name | Description | Device \# |  | Note |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 station occupied | 2 stations occupied |  |
| Ready | This signal turns to " 1 " (ON) when the servo amplifier is ready to operate without any failure after servo-on. | RXn0 | RXn0 |  |
| In position | This signal turns to " 1 " (ON) when the droop pulse value has become less than the in-position range set in the parameter. <br> This signal is not output while the base circuit is off. | RXn1 | RXn1 |  |
| Rough match | This signal turns to " 1 " (ON) when the command remaining distance has become less than the rough match output range set in the parameter. <br> This signal is not output while the base circuit is off. | $\mathrm{RXn2}$ | $\mathrm{RXn2}$ |  |
| Limiting torque | This signal turns to " 1 " (ON ) when the torque limit value set internally or externally is reached. | RXn4 | RXn4 |  |
| Overlapping completion | This signal turns to " 1 " (ON) when the servo motor speed is reached to the overlap speed. | RXn5 | RXn5 |  |
| Electromagnetic brake inter lock | The electromagnetic brake interlock signal is output. RX6 turns to " 0 " (OFF) at servo-off or alarm occurrence. | RXn6 | RXn6 |  |
| In temporary stop | This signal turns to " 1 " (ON) in deceleration operation when the temporary stop signal is detected. | $\mathrm{RXn7}$ | RXn7 |  |
| Monitoring | Refer to Monitor output execution demand. | RXn8 | RXn8 |  |
| Instruction code execution completion | Refer to Instruction code execution demand. | RXn9 | RXn9 |  |
| Warning | RXA turns to " 0 " (OFF) if a warning occurs in the servo amplifier. | RXnA | RXnA |  |
| Moving complition | This signal turns to " 1 " (ON) when in-position and rough much signals turned on. | RXnC | RXnC |  |
| Dynamic break interlock | This signal turns to "1" (ON) within dynamic break interlock. | RXnD | RXnD |  |
| Position range output | This signal turns to " 1 " (ON) within the actual position is in the range of parameter No. 55 to 53. <br> This signal will be turns to " 0 " (OFF) in case of Zeroing in-completion or servo off. | RXnE | RXnE |  |
| Synchronous completion | This signal turns to " 1 " (ON) when the servo motor speed is reached to the synchronous speed. | RXnF | RXnF |  |
| Trouble | This signal turns to " 0 " (OFF) in normal status. It will be turns to " 1 " in temporary stop using external dynamic brake. Refer to the alarm code for alarm number. | $R X(n+1) A$ | $R X(n+3) A$ |  |
| Remote bureau communication ready | This signal turns to " 1 " (ON) in normal status and will be turns to " 0 " (OFF) within servo alarm occurs or reset operation. | $R X(n+1) B$ | $R X(n+3) B$ |  |
| Position instruction execution completion | Refer to the position instruction execution demand. |  | $R X(n+2) 0$ |  |
| Speed instruction execution completion | Refer to the speed instruction execution demand. |  | $R X(n+2) 1$ |  |


| Signal name | Description |  |  |  |  |  | Device \# |  | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 1 station occupied | 2 stations occupied |  |
| Point block output (bit 0) | Point block No. is set after position complete. <br> This signal will be turns off if;. <br> 1) Power off <br> 2) Servo off <br> 3) In zeroing <br> 4) After zeroing completion <br> Also is will be hold previous status if; <br> 1) Changed operation mode <br> 2) In manual operation <br> 3) In fast zeroing <br> The data table is as follows; |  |  |  |  |  |  | $R X(n+2) 2$ |  |
| Point block output (bit 1) |  |  |  |  |  |  |  | $R X(n+2) 3$ |  |
| Point block output (bit 2) |  |  |  |  |  |  |  | $R X(n+2) 4$ |  |
| Point block output (bit 3) | Point table\# | RY26 | RY25 | RY24 | RY23 | RY22 |  | $R X(n+2) 5$ |  |
|  | 1 | 0 | 0 | 0 | 0 | 1 |  |  |  |
|  | 2 | 0 | 0 | 0 | 1 | 0 |  |  |  |
|  | 3 | 0 | 0 | 0 | 1 | 1 |  |  |  |
|  | 4 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| Point block output (bit 4) |  | , |  | : |  | : |  | $R X(n+2) 6$ |  |
|  | 29 | 1 | 1 | 1 | 0 | 1 |  |  |  |
|  | 30 | 1 | 1 | 1 | 1 | 0 |  |  |  |
|  | 31 | 1 | 1 | 1 | 1 | 1 |  |  |  |

c) Remote registers

The signal whose Remote Register field has an oblique line cannot be used.

1) Input (PLC $\rightarrow$ servo amplifier)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Remote register} \& \multirow[b]{2}{*}{Signal name} \& \multirow[b]{2}{*}{Description} \& \multirow[b]{2}{*}{Setting range} \\
\hline 1 station occupied \& 2 stations occupied \& \& \& \\
\hline RWWn \& RWWn \& Monitor 1 \& \begin{tabular}{l}
Demands the status indication data of the servo amplifier. \\
1) When 1 station is occupied \\
Setting the code of the status indication item to be monitored to RWwn and turning RYn8 to " 1 " (ON) sets data to RWrn. \\
2) When 2 stations are occupied Setting the code of the status indication item to be monitored to RWwn and turning RYn8 to " 1 " (ON) sets data to RWrn. \\
When demanding 32 -bit data, specifying the lower 16-bit code No. and turning RY n8 to " 1 " (ON) sets the lower 16-bit data to RWrn and the upper 16 -bit data to RWrn+1.
\end{tabular} \& 0000 to 001A \\
\hline RWW \({ }_{\text {n }}+1\) \& RWW \({ }^{\text {n }}\) +1 \& Monitor 2 \& \begin{tabular}{l}
Demands the status indication data of the servo amplifier. \\
1) When 1 station is occupied Setting the code of the status indication item to be monitored to RWwn +1 and turning RYn8 to " 1 " (ON ) sets data to RWrn+1. \\
2) When 2 stations are occupied When demanding 32-bit data, specifying the lower 16-bit code No. and turning RYn8 to " 1 " (ON) sets the lower 16-bit data to RWrn+5 and the upper 16-bit data to RWrn+6.
\end{tabular} \& 0000 to 001A \\
\hline RWWn+2 \& RWWn+2 \& Instruction code \& \begin{tabular}{l}
Sets the instruction code used to perform parameter or point table data read, alarm reference or the like. \\
Setting the instruction code to RWWn+2 and turning RYn9 to " 1 " (ON ) executes the instruction. RXn9 turns to " 1 " (ON ) on completion of instruction execution.
\end{tabular} \& Refer to instruction code definitions \\
\hline RWWn+3 \& RWWn+3 \& Writing data \& \begin{tabular}{l}
Sets the written data used to perform parameter or point table data write, alarm history clear or the like. \\
Setting the written data to RWwn+3 and turning RYn9 to " 1 " (ON) writes the data to the servo amplifier. RXn9 turns to " 1 " (ON) on completion of write.
\end{tabular} \& Refer to write instruction code Refer to parameter list Refer to point table. \\
\hline  \& RWWn+4

RWW $W_{n+5}$ \& \begin{tabular}{l}
Position block No./ Position instruction data under 16bit <br>
Position block No./ Position instruction data upper 16bit

 \& 

Sets the position block No. to be executed in the automatic operation mode when 2 stations are occupied. <br>
Setting the position block No. to RWWn+4 and turning RY( $n+2$ ) 0 to " " " (ON) sets the position block No. to the servo amplifier. <br>
When the point table is not used, set the position command data. <br>
Setting the lower 16 bits to RWw4 and the upper 16 bits to RWwn+5 and turning RY $(\mathrm{n}+2) 0$ to " 1 " (ON) writes the upper and lower 16-bit position command data <br>
Use parameter No. 41 to set the position block No. and position command data.

 \& 

Position command data: <br>
Pr No. $0=\square \square \square 0:$ -999999 to 999999 <br>
Pr No. $0=\square \square \square 1:$ 0 to 999999
\end{tabular} <br>

\hline  \& RWWn+6 \& Speed instruction data \& Setting the position block No. to RWWn+5 and turning RY(n+2)1 to " 1 " (ON) writes the speed command data to the servo amplifier. \& | Speed command data: |
| :--- |
| 0 to permissible speed | <br>

\hline
\end{tabular}

2) Output (Servo amplifier $\rightarrow$ PLC)

Note that the data set to RWrn and RWrn+1 depends on whether 1 station or 2 stations are occupied. If you set inappropriate code No . or data to the remote register input, the error code is set to Answer code (RWrn+2). Refer to the error code.

When 1 station is occupied

| Remote register | Signal name | Description |
| :---: | :--- | :--- |
| RWrn | Monitor 1 data | The data of the status indication item set to RWwn is set. |
| RWrn+1 | Monitor 2 data | The data of the status indication item set to RWwn+1 is set. |
| RWrn+2 | Answer code | "0000" is set when the codes set to RWwn $\sim$ RWwn+3 are executed <br> normally. |
| RWrn +3 | Reading data | Data corresponding to the read code set to RWwn+2 is set. |

When 2 stations are occupied

| Remote register | Signal name | Description |
| :---: | :--- | :--- |
| RWrn | Monitor 1 data under 16bit | The lower 16 bits of the data of the status indication item set to RWWn <br> are set. |
| RWrn+1 | Monitor 1 data upper 16bit | The upper 16 bits of the data of the status indication item set to RWWn <br> are set. A sign is set if there are no data in the upper 16 bits. |
| RWrn+2 | Answer code | "0000" is set when the codes set to RWwn $\sim$ RWWn+6 are executed <br> normally. |
| RWrn+3 | Reading data | Data corresponding to the read code set to RWwn+2 is set. |
| RWrn+4 | Monitor 2 data under 16bit | The lower 16 bits of the data of the status indication item set to RWwn +1 <br> are set. |
| RWrn+5 | Monitor 2 data upper 16bit | The upper 16 bits of the data of the status indication item set to RWWn+1 <br> are set. A sign is set if there are no data in the upper 16 bits. |

### 4.5.2 Monitor codes

To demand 32-bit data when 2 stations are occupied, specify the lower 16 -bit code No. Use any of the instruction codes 0101 to 0127 to read the decimal point position (multiplying factor) of the status indication.
Setting any code No. that is not given in this section will set the error code ( $\square \square 1 \square$ ) to Answer code (RWrn+2). At this time, " 0000 " is set to RWrn, RWrn+1, RWrn+5 and RWrn+6.

| Code No. |  | Monitored item | Answer data (Servo amplifier $\rightarrow$ PLC) |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 station occupied | 2 stations occupied |  | Data length | Unit |
| 0000 | 0000 | Not monitored. | 0000 |  |
| 0001 | 0001 | Current position under 16bit | 16bit | $\times 10^{\text {STM }}[\mathrm{mm}]$ |
| 0002 | - | Current position upper 16bit | 16bit |  |
| 0003 | 0003 | Command position under 16bit | 16bit |  |
| 0004 | - | Command position upper 16bit | 16bit |  |
| 0005 | 0005 | Command remaining distance under 16bit | 16 bit |  |
| 0006 | - | Command remaining distance upper 16bit | 16bit |  |
| 0007 | 0007 | Override | 16 bit | [\%] |
| 0008 | 0008 | Position block | 16bit | [ $\mathrm{No}$. ] |
| 0009 |  |  | 16 bit |  |
| 000A | 000A | Feedback pulse value under 16bit | 16bit | [pulse] |
| 000B | $\underbrace{-}$ | Feedback pulse value upper 16bit | 16bit | [pulse] |
| 000C |  |  | 16bit |  |
| 000D | - |  | 16bit |  |
| 000E | 000E | Droop pulse value under 16bit | 16bit | [pulse] |
| 000F | $\underbrace{-200}$ | Droop pulse value upper 16bit | 16bit | [pulse] |
| 0010 | 0010 | Torque limit command voltage | 16bit | x0.01[V] |
| 0011 | 0011 | Regenerative load factor | 16bit | [\%] |
| 0012 | 0012 | Effective load factor | 16bit | [\%] |
| 0013 | 0013 | Peak load factor | 16bit | [\%] |
| 0014 | 0014 | Momentary torque | 16 bit | [\%] |
| 0015 | 0015 | ABS counter | 16bit | [rev] |
| 0016 | 0016 | Motor speed under 16bit | 16bit | x0.1[rev/min] |
| 0017 | $\mathrm{S}^{2}$ | Motor speed upper 16bit | 16bit | x0.1[rev/min] |
| 0018 | 0018 | Bus voltage | 16bit | [V] |
| 0019 | 0019 | ABS position reading under 16bit | 16bit | [pulse] |
| 001A | $\mathrm{S}^{2}$ | ABS position reading middle 16bit | 16bit | [pulse] |
| 001B | 001B | ABS position reading upper 16bit | 16 bit | [pulse] |
| 001C | 001C | Cycle counter under 16bit | 16bit | [pulse] |
| 001D |  | Cycle counter upper 16bit | 16 bit | [pulse] |
| 001E |  |  | 16bit |  |
| 001F |  |  | 16bit |  |
| 0020 | 0020 | Current position under 16bit | 16bit | [pulse] <br> 80000001h <br> to <br> 7FFFFFFFh |
| 0021 |  | Current position upper 16bit | 16bit |  |
| 0022 | 0022 | Command position under 16bit | 16bit |  |
| 0023 |  | Command position upper 16bit | 16bit |  |
| 0024 | 0024 | Command remaining distance under 16bit | 16bit |  |
| 0025 |  | Command remaining distance upper 16bit | 16bit |  |
| 0026 | 0026 | Motor speed under 16bit | 16bit | [pulse/sec] |
| 0027 |  | Motor speed upper 16bit | 16bit | [pulse/sec] |
| 0028 | 0028 | Command speed under 16bit | 16bit | [pulse/sec] |
| 0029 |  | Command speed upper 16bit | 16bit | [pulse/sec] |

Note: Monitor scale value can read at command code (from 0100h)

### 4.5.3 Instruction codes (RWw2 • RWw3)

Refer to the instruction code timing charts.
(1) Read instruction codes

Set the code No. corresponding to the item to RWWn+2. The codes and answer data are all 4-digit hexadecimal numbers.
Setting any code No. that is not given in this section will set the error code ( $\square \square 1 \square$ ) to Answer code (RWrn+2). At this time, "0000" is set to Reading data (RWrn+3).

| Code No. | Item/Function | Reading data (RW ${ }_{\text {R3 }}$ ) contents (Servo amplifier $\rightarrow$ PLC) |
| :---: | :---: | :---: |
| 0000 | Operation mode <br> Reads the operation mode. | 0000: CC-Link operation mode <br> 0001: Test operation mode via personal computer |
| 0002 | Travel multiplying factor <br> Reads the multiplying factor of the position data in the position block set in parameter No. 01. | $\begin{aligned} & \text { 0300: x1000 } \\ & \text { 0200: x100 } \\ & 0100: \times 10 \\ & 0000: \times 1 \end{aligned}$ |
| 0010 | Current alarm (warning) reading Reads the alarm No. or warning No. occurring currently. |  |
| $\begin{gathered} 0020 \\ \text { to } \\ 0025 \end{gathered}$ | Alarm number in alarm history (most recent alarm) | Alarm No. that occurred in past <br> Note : The latest alarm number is in code 0020. |


| Code No. | Item/Function | Reading data (RWRз) contents (Servo amplifier $\rightarrow$ PLC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 0030 \\ \text { to } \\ 0035 \end{gathered}$ | Alarm occurrence time in alarm history (most recent alarm) | Note: | Occurr <br> he latest alarm num | rence time umber is in | f alarm that code 0030. | occurred in past |
| 0040 | Input signal status 0 <br> Reads the statuses (0 or 1 ) of the input signals. | bit 0 to corresp <br> The sta <br> No.116, <br> bitF <br> bit0: <br> bit1: <br> bit2: <br> bit3: | it $F$ indicate the $s$ ding input signal uses will be indic No. 117 and No. 1 <br> ON bit4: LSP <br> bit5: LSN <br> bit6: MD0 <br> bit7: STP | statuses OF als. <br> cating extern 118 are chan <br> bit8: MOR <br> bit9: COR <br> bitA: DIO <br> bitB: DII | F/ON (0/1) <br> nal I/O whe ged to exter <br> bitC: DI2 <br> bitD: DI3 <br> bitE: DI4 <br> bitF: STS | of the <br> en the parameter rnal I/O. |
| 0041 | Input signal status 1 <br> Reads the statuses (0 or 1) of the input signals. | bit 0 to corresp The sta No. 116 <br> bitF $\square$ <br> bit0: <br> bit1: <br> bit2: <br> bit3: | it F indicate the s ding input signal uses will be indica No. 117 and No. 1 <br> SR bit4: <br> PR bit5: <br> bit6: TL1 <br> bit7: PC | statuses OF ls. <br> ating extern 118 are chan <br> bit8: CDP <br> bit9: <br> bitA: CSL <br> bitB: INC | F/ON (0/1) <br> al I/O when nged to ext <br> bitC: <br> bitD: <br> bitE: <br> bitF: | of the <br> n the parameter ernal I/O. |
| 0042 | Input signal status 2 <br> Reads the statuses (0 or 1) of the input signals. | bit 0 to corresp The status No. 116 bitF $\square$ <br> bit0: <br> bit1: <br> bit2: <br> bit3: | $F$ indicate the ding input signal es will be indica o. 117 and No. <br> bit4: <br> bit5: <br> bit6: <br> bit7: | statuses OF als. <br> ating extern 118 are chan <br> bit8: <br> bit9: <br> bitA: RES <br> bitB: | /ON (0/1) <br> I/O when ged to ext <br> bitC: <br> bitD: <br> bitE: <br> bitF: | of the <br> n the parameter ernal I/O. |



| Code No. | Item/Function | Reading data (RW ${ }_{\text {R3 }}$ ) contents (Servo amplifier $\rightarrow$ PLC) |
| :---: | :---: | :---: |
| 0081 | Energization time Reads the energization time from shipment. | Returns the energization time [h]. |
| 0082 | Power ON frequency <br> Reads the number of power-on times from shipment. | Returns the number of power-on times. |
| OOAO | Ratio load inertia Reads the estimated ratio of load inertia moment to servo motor shaft inertia moment. | Returns the estimated ratio of load inertia moment to servo motor shaft inertia moment [times]. |
| 00BO | Within-1-revolution position data (CYC0) Cycle counter value of absolute home position under 16 bit | Return unit [pulses] |
| 00B1 | Within-1-revolution position data (CYC0) Cycle counter value of absolute home position upper 16 bit | Return unit [pulses] |
| 00C0 | Error parameter No./Point block No. reading | Ex. : The data will be "0209" when position block No. 9 has an error. |
| $\begin{gathered} 0200 \\ \text { to } \\ 027 \mathrm{C} \end{gathered}$ | Parameter setting <br> Reads the values set in parameter No. 0 to 124. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the parameter No . | The setting of the requested parameter $N o$. is returned. For parameter No. 1, "F" enters the blank digits. F or example, setting of " 13 " will be "FF 13 ". <br> The range of reading parameters depends on the setting in parameter No. 19. An error code will be respond when try to read blocking parameter in No.19. |


| Code No. | Item/Function | Reading data (RWR3) contents (Servo amplifier $\rightarrow$ PLC) |
| :---: | :---: | :---: |
| $\begin{gathered} 0300 \\ \text { to } \\ 037 \mathrm{C} \end{gathered}$ | Data form of parameter setting <br> Reads the data format of the values set in parameter No. 0 to 124. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the parameter No. | The setting of the requested parameter No. is returned. <br> An error code will be respond when try to read blocking parameter in No.19. |
| $\begin{gathered} 0400 \\ \text { to } \\ 041 \mathrm{~F} \end{gathered}$ | Position data of position block <br> Reads the position data of position block No. 00 to 31. <br> The lower 16 bits are read in even code and the upper 16 bits in odd code. | The position data (upper 16 bits or lower 16 bits) set in the requested position block No. is returned. |
| $\begin{gathered} 0500 \\ \text { to } \\ 051 \mathrm{~F} \end{gathered}$ | Example <br> Instruction code 0413: <br> Lower 16 bits of position block No. 19 <br> Instruction code 0513: <br> Upper 16 bits of position block No. 19 |  |
| $\begin{gathered} 0600 \\ \text { to } \\ 061 \mathrm{~F} \end{gathered}$ | Rotational speed of position block <br> Reads the speeds of position block No. 00 to 31. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | The speed set to the requested position block No. is returned. |
| $\begin{gathered} 0700 \\ \text { to } \\ 071 \mathrm{~F} \end{gathered}$ | Acceleration time constant of position block <br> Reads the acceleration time constants of position block No. 00 to 31. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | The acceleration time constant set to the requested position block No. is returned. |
| $\begin{gathered} 0800 \\ \text { to } \\ 081 \mathrm{~F} \end{gathered}$ | Deceleration time constant of position block <br> Reads the deceleration time constants of position block No. 00 to 31. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | The deceleration time constant set to the requested position block No. is returned. |
| $\begin{gathered} 0900 \\ \text { to } \\ 091 \mathrm{~F} \end{gathered}$ | Dwell time of position block <br> Reads the dwell time of position block No. 00 to 31. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | The dwell time set to the requested position block No. is returned. |


| Code No. | Item/Function | Reading data (RWW ${ }^{2}$ ) contents <br> (Servo amplifier $\rightarrow$ PLC) |
| :---: | :--- | :--- |
| OAOO | Advanced function of position block <br> to <br> OA1F | Read the advanced function of position <br> block No.00 to 31. |
| The decimal value converted from the 2 <br> lower digit of the code No. corresponds to <br> the position block No. | The advanced function set to the requested position block No. is <br> returned. |  |

(2) Write instruction codes

Set the code No. corresponding to the item to Instruction code (RWwn+2) and the written data to Writing data (RWwn+3). The codes and answer data are all 4-digit hexadecimal numbers.
Setting any code No. that is not given in this section will set the error code ( $\square \square 1 \square$ ) to Answer code (RWrn+2).

| Code No. | Item | Writing data (RWwn+3) contents (PLC $\rightarrow$ Servo amplifier) |
| :---: | :---: | :---: |
| $\begin{gathered} 8000 \\ \text { to } \\ 800 \mathrm{~F} \end{gathered}$ | Empty |  |
| 8010 | Alarm reset command <br> Deactivates the alarm that occurred. <br> This function is the same as that of the input signal of device No. RY ( $n+1$ )A or RY ( $n+3$ )A. | 1EA5 |
| 8100 | Empty |  |
| 8101 | Feedback pulse value display data is clear Resets the display data of the status indication "feedback pulse value" to 0 . | 1EA5 |
| $\begin{gathered} 8200 \\ \text { to } \\ 827 \mathrm{C} \end{gathered}$ | Parameter setting (RAM) <br> Writes the values set in parameter No. 00 to 124 to RAM. These values are cleared when power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the parameter No. | Convert the decimal values into hexadecimal before making setting. <br> For parameter No. 1, "F" enters the blank digits. For example, setting of " 13 " must be "FF 13 ". <br> The range of writing parameters depends on the setting in parameter No. 19. An error code will be respond when try to write blocking parameter in No. 19. |
| $\begin{gathered} 8300 \\ \text { to } \\ 837 C \end{gathered}$ | Parameter setting (EEP-ROM) <br> Writes the values set in parameter No. 00 to 124 to EEP-ROM. Written to EEP-ROM, these values are held if power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the parameter No. | Convert the decimal values into hexadecimal before making setting. <br> For parameter No. 1, "F" enters the blank digits. For example, setting of " 13 " must be "F F 13 ". <br> The range of writing parameters depends on the setting in parameter No. 19. An error code will be respond when try to write blocking parameter in No.19. |
| $\begin{gathered} 8400 \\ \text { to } \\ 841 \mathrm{~F} \\ \hline \end{gathered}$ | Position data of position block (RAM) <br> Writes the position data of position block No. 00 to 31 to RAM. These values are cleared when power is | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 8500 \\ \text { to } \\ 851 \mathrm{~F} \end{gathered}$ | switched off. <br> The usable position block Nos. depend on the feeding system and the number of occupied stations. <br> The lower 16 bits are written in even code and the upper 16 bits in odd code. <br> Example <br> Instruction code 8413: <br> Lower 16 bits of position block No. 19 <br> Instruction code 8513: <br> U pper 16 bits of position block No. 19 |  |


| Code No. | Item | Writing data (RWwn+3) contents (PLC $\rightarrow$ Servo amplifier) |
| :---: | :---: | :---: |
| $\begin{gathered} 8600 \\ \text { to } \\ 861 \mathrm{~F} \end{gathered}$ | Speed data of position block (RAM) <br> Writes the speed data Nos. of position block No. 00 to 31 to RAM. These values are cleared when power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 8700 \\ \text { to } \\ 871 \mathrm{~F} \end{gathered}$ | Acceleration time constant of position block (RAM) Writes the acceleration time constants of position block No. 00 to 31 to RAM. These values are cleared when power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 8800 \\ \text { to } \\ 881 \mathrm{~F} \end{gathered}$ | Deceleration time constant of position block (RAM) Writes the deceleration time constants of position block No. 00 to 31 to RAM. These values are cleared when power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 8900 \\ \text { to } \\ 891 \mathrm{~F} \end{gathered}$ | Dwell time of position block (RAM) <br> Writes the dwell time constants of position block No. 00 to 31 to RAM. These values are cleared when power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 8 \mathrm{~A} 00 \\ \text { to } \\ 8 \mathrm{~A} 1 \mathrm{~F} \end{gathered}$ | Advanced function of position block (RAM) <br> Writhes the advanced function of position block No. 00 to 31 to RAM. These values are cleared when power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{aligned} & \text { 8B00 } \\ & \text { to } \\ & \text { 8B1F } \end{aligned}$ | Position data of position block (EEP-ROM) <br> Writes the position data of position block No. 00 to 31 to EEP-ROM. Written to EEP-ROM, these values are held if power is switched off. <br> The lower 16 bits are written in even code and the | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 8 \mathrm{C} 00 \\ \text { to } \\ 8 \mathrm{C} 1 \mathrm{~F} \end{gathered}$ | Example <br> Instruction code 8B13: <br> Lower 16 bits of position block No. 19 <br> Instruction code 8C13: <br> Upper 16 bits of position block No. 19 |  |


| Code No. | Item | Writing data (RWW3) contents (PLC $\rightarrow$ Servo amplifier) |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 8D00 } \\ & \text { to } \\ & \text { 8D1F } \end{aligned}$ | Speed data of position block (EEP-ROM) <br> Writes the speed block Nos. of position block No. 00 to 31 to EEP-ROM. Written to EEP-ROM, these values are held if power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 8 \mathrm{E} 00 \\ \text { to } \\ 8 \mathrm{E} 1 \mathrm{~F} \end{gathered}$ | Acceleration time constant of position block (EEPROM) <br> Writes the acceleration time constants of position block No. 00 to 31 to EEP-ROM. Written to EEPROM, these values are held if power is switched off. The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 8 \mathrm{~F} 00 \\ \text { to } \\ 8 \mathrm{~F} 1 \mathrm{~F} \end{gathered}$ | Deceleration time constant of position block (EEPROM) <br> Writes the deceleration time constants of position block No. 00 to 31 to EEP-ROM. Written to EEPROM, these values are held if power is switched off. The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 9000 \\ \text { to } \\ 901 \mathrm{~F} \end{gathered}$ | Dwell time of position block (EEP-ROM) <br> Writes the dwell time of position block No. 00 to 31 to EEP-ROM. Written to EEP-ROM, these values are held if power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |
| $\begin{gathered} 9100 \\ \text { to } \\ 911 \mathrm{~F} \end{gathered}$ | Advanced function of position block (EEP-ROM) <br> Writes the advanced function of position block No. 00 to 31 to held if power is switched off. <br> The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. | Convert the values into hexadecimal before making setting. |

### 4.5.4 Answer codes (RWrn+2)

If any of the monitor codes, instruction codes, position block Nos. set to the remote register is outside the setting range, the corresponding error code is set to Answer code (RWrn+2). "0000" is set if they are normal.


| Code No. | Error | Details |
| :---: | :---: | :---: |
| 0 | Normal answer | Instruction was completed normally. |
| 1 | Code error | - The monitor code not in the specifications was set to RWwn - RWwn+1. <br> - The instruction code not in the specifications was set to RWwn+2. <br> - Read/write of the position block data of No. 32 or later was set to RWwn+2. |
| 2 | Parameter selection error | - The parameter No. disabled for reference was set to RWwn+2. <br> - Write of acceleration/deceleration time constant was set when Spattern acceleration/deceleration was selected, or write of S-pattern acceleration/deceleration time constant was set when linear acceleration/deceleration was selected. |
| 3 | Write range error | - An attempt was made to write the parameter or point table value outside the setting range to RWwn+3. <br> - The position command data/position block No./speed command data/speed block No. outside the setting range was set to RWwn+4 : RWwn+5 : RWwn+6. |

### 4.5.5 Setting the external input signals

Using parameter No. 116, 117 and 118, you can assign the input signals as the external input signals. The signals assigned as the external input signals cannot be used in CC-Link.

Parameter No. 116


## Parameter No. 117



Parameter No. 118


### 4.6 Data communication timing charts

4.6.1 Monitor codes
(1) When 1 station is occupied


Set the monitor codes to Monitor 1 ( RWwo ) and Monitor 2 ( $\mathrm{RW} \mathrm{w}_{1}$ ) and turn Monitor output execution demand (RY8) to " 1 " (ON). Turning RY8 to " 1 " (ON) sets the next data. Data are all hexadecimal numbers. At this time, Monitoring (RX8) turns to " 1 " (ON) at the same time.

Monitor data 1 (RWRo): Data demanded by Monitor 1 (RWwo)
Monitor data 2 (RWR1): Data demanded by Monitor 2 (RWW1)
Answer code (RWR2): Normal or error answer code
For 32-bit data, set the lower 16 bits of the monitor code to Monitor 1 (RWwo) and the upper 16 bits to Monitor 2 ( $\mathrm{RW}_{\mathrm{w} 1}$ ) and read them simultaneously.
The monitor data set to the remote register are always updated while RX8 is " 1 " (ON).
When RX8 turns to " 0 " (OFF), the data set to Monitor data RW ${ }_{R 0}$, RWR1 are held. If the monitor code not in the specifications is set to either Monitor 1 (RWwo) or Monitor 2 ( $R W_{W_{1}}$ ), the corresponding error code (ㅁㅁㄴ) is set to Answer code.
(2) When 2 stations are occupied


Set the monitor codes to Monitor 1 (RWwo) and Monitor 2 (RWw1) and turn Monitor output execution demand (RY8) to " 1 " (ON ). Turning RY8 to " 1 " (ON ) sets the next data. 32-bit data are all divided into the upper 16 bits and lower 16 bits, and set to the remote register. Data are all hexadecimal numbers. At this time, Monitoring (RX8) turns to " 1 " (ON) at the same time.

Monitor data 1 under 16 bit (RWRo): Lower 16 bits of data demanded by Monitor 1 (RWwo) Monitor data 1 upper 16 bit (RWR1): Upper 16 bits of data demanded by Monitor 1 (RWwo) Monitor data 2 under 16 bit (RWR5): Lower 16 bits of data demanded by Monitor 2 (RWW1) Monitor data 2 upper 16 bit (RWR6): Upper 16 bits of data demanded by Monitor 2 (RWw1)

A sign is set if data does not exist in RWR1 • RWR6. A "+" sign is indicated by " 0000 ", and "-" by "FFFF". The monitor data set to the remote register are always updated while RX8 is " 1 " (ON). When RX8 turns to "0" (OFF ), the data set to M onitor data RWRo, RWR1, RWR5, RWR6 are held. If the monitor code not in the specifications is set to either Monitor 1 (RWwo) or Monitor 2 (RWw1), the corresponding error code ( $\square \square \square 1$ ) is set to Answer code.

### 4.6.2 Instruction codes

(1) Read instruction codes (0000 to 7FFFh)


Set the read instruction code to Instruction code (RWw2) and turn Instruction code execution demand (RY9) to " 1 " (ON). Turning RY9 to " 1 " (ON) sets the data corresponding to the preset read code to Reading data (RWR3). Data are all hexadecimal numbers. At this time, Instruction code execution completion (RX9) turns to " 1 " (ON) at the same time.
Read the read data set to RWR3 while RX9 is " 1 " (ON). The data set to Reading data (RWR3) is held until the next read instruction code is set and RY9 is turned to " 1 " (ON).
If the instruction code not in the specifications is set to Instruction code (RWw2), the corresponding error code ( $\square \square 1 \square$ ) is set to Answer code. If any unusable parameter, position block or speed block is read, the corresponding error code ( $\square \square 2 \square$ ) is set.
Turn Instruction code execution demand (RY9) to "0" (OFF) after completion of data read.
(2) Write instruction codes (80000 to FFFFh)


Set the write instruction code to Instruction code (RWw2) and the data to be written (data to be executed) to Writing data (RWw3) in hexadecimal, and turn Instruction code execution demand (RY9) to " 1 " (ON).
Turning RY9 to " 1 " (ON) sets the data set in Wiring data (RWw3) to the item corresponding to the write instruction code. When write is executed, Instruction code execution completion (RX9) turns to " 1 " (ON).
If the instruction code not in the specifications is set to Instruction code (RWW2), the corresponding error code ( $\square \square 1 \square$ ) is set to Answer code.
Turn Instruction code execution demand (RY9) to "0" (OFF) after Instruction code execution completion (RX9) has turned to " 1 " (ON).

## 4．6．3 Direct Specified Mode

The functions in this section are usable only when 2 stations are occupied．
The direct specified mode will be enabled when the automatic mode（RYn6）is turned on and the position instruction function $(R Y(n+2) A)$ is turned on．The direct specified mode has：

1）Point Block No．Specified Mode
2）Position Instruction and Block No．Specified of speed and acceleration／deceleration
3）Instruction of position and speed
The setting of parameter No． 41 determine above mode．
The position block No．（RYnA to RYnE）will be disabled during the direct specified mode．
The servomotor will be stopped when the manual drive mode selected within the operation．

Incremental and absolute operation can be select via $A B S / I N C$ select signal（OFF：absolute operation， ON：incremental operation）within direct position command mode．In this case absolute value command mode must be selected in parameter No． 0.
ABS／INC select signal will be disabled in incremental value command mode．
（1）When specifying the position block No．
Preset＂ロロロ 1＂（initial value）in parameter No． 41 to enable position block No．－specified operation．


Note．This data is stored into RAM of the servo amplifier．Hence，the data is cleared when power is switched off．

Set the position block No．to RWw4 and turn Position instruction demand（RY（n＋2）0）to＂ 1 ＂（ON ）． Turning RY（ $\mathrm{n}+2$ ） 0 to＂ 1 ＂（ON ）stores the position block No．into RAM of the servo amplifier． When the data is stored，Position instruction execution completion（ $R X(n+2) 0$ ）turns to＂ 1 ＂（ON）． If data outside the setting range is set to Position block No．（RWw4），the error code（ $\square 3 \square \square$ ）is set to Answer code．
Turn Forward rotation start（RYn1）／Reverse rotation start（RYn2）to＂1＂（ON）after Position instruction execution completion（RX（n＋2）0）has turned to＂ 1 ＂（ON ）．

The advance function in point block will be disabled in position block No．instruction in direct instruction mode．Turning RY（ $n+2$ ）A to＂ 0 ＂（OFF）for advance function．
(2) When setting the position command data and specified of speed and acceleration / deceleration in the block No.
Preset " $\square \square \square 2$ in parameter No. 41 to enable position command data-set and specified of speed and acceleration / deceleration in the block No.


Note. This data is stored into RAM of the servo amplifier. Hence, the data is cleared when power is switched off.

Set the lower 16 bits of the position instruction data to Position instruction data under 16 bit (RWwn+4), the upper 16 bits of the position instruction data to Position instruction data upper 16 bit (RWwn+5), and position block No. to RWwn+6, and turn Position instruction demand (RY(n+2)0) and Speed instruction demand (RY(n+2)1) to " 1 " (ON ).
Turning RY ( $n+2$ ) 0 and RY ( $n+2$ ) 1 to " 1 " (ON ) stores the position command data and specified of speed data and acceleration / deceleration data in the block No. into RAM of the servo amplifier.
When the data are stored, Position instruction execution completion ( $R X(n+2) 0$ ) and specified of speed data and acceleration / deceleration data in the block No. execution completion ( $R X(n+2) 1$ ) turn to " 1 " (ON).
If data outside the setting range is set to any of Position instruction data under 16 bit (RWwn+4), Position instruction data upper 16 bit (RWwn+5) and Speed, Acceleration / Deceleration data in the block No. (RWwn+6), the error code is set to Answer code.
Turn Forward rotation start (RYn1) / Reverse rotation start (RYn2) to "1" (ON) after Position instruction execution completion ( $R X(n+2) 0$ ) and Speed, Acceleration / Deceleration data in the block No. execution completion (RX( $n+2) 1$ ) have turned to " 1 " (ON).
Latest data will be used when Forward rotation start (RYn1) / Reverse rotation start (RYn2) is turned on during execution completion signals $(R X(n+2) 0 / R X(n+2) 1)$ are turning on.
(3) When setting the position command data and speed command data

Preset "ㅁㅁㅁ" in parameter No. 41 to enable position command data and speed command data set operation. As the acceleration / deceleration time constant for operation, use the setting of speed block No. 1.


Note. This data is stored into RAM of the servo amplifier. Hence, the data is cleared when power is switched off.
Set the lower 16 bits of the position instruction data to Position instruction data under 16 bit (RWw4), the upper 16 bits of the position instruction data to Position instruction data upper 16 bit (RWw5), and speed instruction data to Speed instruction data (RWw6), and turn Position instruction demand ( $R Y(n+2) 0$ ) and Speed instruction demand (RY ( $n+2$ )1) to " 1 " (ON ).
Turning RY(n+2)0 and RY(n+2)1 to " 1 " (ON) stores the position command data and speed command data into RAM of the servo amplifier.
When the data are stored, Position instruction execution completion ( $\mathrm{RX}(\mathrm{n}+2) 0$ ) and Speed instruction execution completion (RX(n+2)1) turn to " 1 " (ON).
If data outside the setting range is set to any of Position instruction data under 16 bit (RWw4), Position instruction data upper 16 bit (RWw5) and Speed command data (RWw6), the error code is set to Answer code.
Turn Forward rotation start (RYn1) / Reverse rotation start (RYn2) to "1" (ON) after Position instruction execution completion $(R X(n+2) 0)$ and Speed instruction execution completion ( $R X(n+2) 1$ ) have turned to "1" (ON).
Latest data will be used when Forward rotation start (RYn1) / Reverse rotation start (RYn2) is turned on during execution completion signals $(R X(n+2) 0 / R X(n+2) 1)$ are turning on.

## 5. Standard Connection Example



Note: 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the servo amplifier to the protective earth (PE) of the control box.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the emergency stop and other protective dircuits.
3. The emergency stop switch must be installed.
4. CN1A, CN1B, CN2 and CN3 have the same shape. Wrong connection of the connectors will lead to a fault.
5. The sum of currents that flow in the external relays should be 80 mA max. If it exceeds 80 mA , supply interface power from external.
6. When starting operation, always connect the forward/reverse rotation stroke end signal (LSN/LSP) with SG. (Normally closed contacts)
7. Trouble (ALM) is connected with COM in normal alarm-free condition.
8. The connection method changes with the servo motor series.
9. The pins with the same signal name are connected in the servo amplifier.
10. A single-phase 230 V power supply may be used with the servo amplifier of MR-J 2S-70CP-S099 or less. However, it cannot be used when the servo amplifier is combined with the HC-SF 52/53 servo motor. Connect the power supply to L1 and L2 terminals and leave L3 open.
11. When using override (VC), make the override selection (OVR) device available.
12. When using torque limit (TLA), make the external torque limit selection (TL) devices available.

## 6. I/O Signals

### 6.1 Signal explanations

1) $C N 1 A$

| Signal Name | Symbol | Pin No. | Description | I/O Division |
| :---: | :---: | :---: | :---: | :---: |
| Digital I/F power supply input | COM | 9 | Used to input $24 \mathrm{VDC}+10 \%$ for input interface. <br> Driver power input terminal for digital interface. <br> COM of each connector is connected in the servo amplifier. <br> When using an external power supply, connect a power supply of 24VDC, 200 mA or more to this terminal. | I |
| Open collector power input | OPC | 11 | When using a manual pulse generator, supply 24VDC to this terminal. |  |
| Digital I/F common | SG | 10, 20 | Common terminal for VDD and COM and isolated from LG. |  |
| Control common | LG | 1 | Common terminal for VC, TLA, MO1, MO2 and P15R. |  |
| Synchronous pulse input | PP | 3 | Used to connect the synchronous encoder. This interface is for line drive and capable up to 400 kpps input frequency. |  |
|  | PG | 13 |  |  |
|  | NP | 2 |  |  |
|  | NG | 12 |  |  |
| Ready | RD | 19 | RD-SG are connected when the servo amplifier is ready to operate without failure after servo-on. | DO-1 |
| Moving completion | MEND | 18 | MEND-SG are connected when the in-position and rough match signal turned on | DO-1 |
| Shield | SD | Plate | Connect one end of the shielded cable. |  |

## 2) CN 1 B

| Signal Name | Symbol | Pin No. | Description | I/O Division |
| :---: | :---: | :---: | :---: | :---: |
| I/F Internal power supply | VDD | 3 | U sed to output $+24 \mathrm{~V} \pm 10 \%$ to across VDD-COM . <br> When using this power supply for digital interface, connect it with COM. <br> Permissible current: 80 mA |  |
| Digital I/F power supply input | COM | 13 | Used to input 24VDC $\pm 10 \%$ for input interface. <br> Driver power input terminal for digital interface. COM of each connector is connected in the servo amplifier. When using an external power supply, connect a power supply of $24 \mathrm{VDC}, 200 \mathrm{~mA}$ or more to this terminal. |  |
| Digital I/F Common | SG | 10, 20 | +24VDC common terminal for VDD, COM, etc. and isolated from LG. |  |
| Servo on | SON | 15 | When SON-SG are connected, the base circuit is switched on and the servo amplifier is ready to operate. <br> When they are disconnected, the base circuit is shut off and the servo motor coasts. | DI-1 |
| Synchronous operation start | STS | 14 | To start synchronous operation, connect STS-SG. | DI-1 |
| F orward rotation start | ST1 | 8 | Forward rotation start signal input terminal. <br> In automatic operation mode, the servo motor rotates in the advance rotation direction as soon as ST1-SG are connected. <br> In JOG operation mode, the servo motor rotates in the forward rotation direction while ST1-SG are connected. | DI-1 |
| Reverse rotation start | ST2 | 9 | Reverse rotation start signal input terminal. <br> In automatic operation mode, the servo motor rotates in the retard rotation direction as soon as ST2-SG are connected. <br> In JOG operation mode, the servo motor rotates in the reverse rotation direction while ST2-SG are connected. | DI-1 |
| Point block No. selection | DII | 17 | Point table No. selection signal input terminal. <br> The following table lists the point blcok numbers which may be chosen by the DI1: <br> Note: 0: DI1-SG open <br> 1: DI1-SG connected <br> DIO is connected in parameter No. 86 as the factory default. | DI-1 |
| Automatic/manual selection | MOD | 7 | Short MDO-SG to choose the automatic operation mode, or open them to choose the manual operation mode. | DI-1 |
| Trouble | ALM | 18 | ALM-SG are disconnected when the protective circuit is activated to shut off the base circuit at power off. <br> They are connected in normal condition at power off. | DO-1 |
| Synchronous completion | SYC | 19 | SYC-SG are connected when the motor speed reaches at a synchronous speed. | DO-1 |
| Overlap completion | SYF | 6 | SYF-SG are connected when the motor speed reached advanced / retard speed after ST1-SG or ST2-SG are connected | DO-1 |

3) CN 3

| Signal Name | Symbol | Pin No. | Description | I/O Division |
| :---: | :---: | :---: | :---: | :---: |
| Analog monitor 1 | MO1 | 4 | Used to output the data set in parameter No. 17 to across MO1-LG in terms of voltage. Resolution 8 bits | Analog output |
| Analog monitor 2 | MO2 | 14 | Used to output the data set in parameter No. 17 to across MO2-LG in terms of voltage. Resolution 8 bits | Analog output |
| Monitor common | LG | $\begin{gathered} 1,3, \\ 11,13 \\ \hline \end{gathered}$ | Monitoring common for control common |  |
| Ground | SD | Plate | Connect one end of the shielded cable. |  |

### 6.2 Additional function devices

By using the parameter No. 78 to 90 setting, you can assign the signals given in this section to the pins of connectors CN1A and CN1B.
(1) Pins which accept different signals

| Pin Type | Connector Pin No. | Device in Initial Status | Device Symbol |
| :---: | :---: | :--- | :---: |
| Input-only pins | CN1A-8 | Empty |  |
|  | CN1B-5 | Servo on | SON |
|  | CN1B-7 | Automatic/ manual selection | MOD |
|  | CN1B-8 | Forward rotation start | ST1 |
|  | CN1B-9 | Reverse rotation start | ST2 |
|  | CN1B-14 | Synchronous operation start | STS |
|  | CN1B-15 | Forced stop | EMG |
|  | CN1B-16 | Empty | DI1 |
|  | CN1B-17 | Point block No.2 selection | SYC |
| Output-only pins | CN1A-19 | Synchronous completion | MEND |
|  | CN1A-18 | Moving completion | SYF |
|  | CN1B-4 | Empty | ALM |
|  | CN1B-6 | Overlap completion | Trouble |

(2) Assignable devices

1) Input devices

2) Output devices


### 6.3 Detailed description of the signals

Index advanced and retard operation

The synchronous operation will start when synchronous operation signal (STS) become enabel. The index advance and retard operation will start when advance or retard operation signal (ST1/ST2) are turn on.


Note: 1.The speed of advance or retard operation can not change within the indexing. It will change next operation.
2. ST1 / ST2 signals are effective after synchronous operation compliting.

### 6.3.1 Start and stop signals

(1) Make up a sequence so that the start signal is switched on after the main circuit has been established. The start signal is invalid if it is switched on before the main circuit is established. Normally, it is interlocked with the ready signal (RD).
(2) A start in the servo amplifier is made when the external start signal changes from OFF to ON. The delay time of the servo amplifier's internal processing is max. 3ms. The delay time of other signals is max. 10 ms .

(3) When a programmable controller is used, the ON time of the start/stop signal should be 5 ms or longer to prevent a malfunction.
(4) During operation, the start signal (ST1, ST2) is not accepted. The next operation should always be started after the rough match signal is output with the rough match output range set to 0 or after the in-position signal is output.

### 6.3.2 Rough match, in-position

The following chart shows the output timings of the rough match and in-position signals:


### 6.3.3 Alarm Occurrence Timing Chart

When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a stop. Switch off the main circuit power supply in the external sequence. To reset the alarm, switch the control circuit power supply off, then on.
However, the alarm cannot be reset unless its cause of occurrence is removed.


Precautions for alarm occurrence

1) Overcurrent, overload 1 or overload 2

If operation is repeated by switching control circuit power off, then on to reset the overcurrent (A.32), overload 1 (A.50) or overload 2 (A.51) alarm after its occurrence, without removing its cause, the servo amplifier and servo motor may become faulty due to temperature rise. Securely remove the cause of the alarm and also allow about 30 minutes for cooling before resuming operation.
2) Regenerative alarm

If operation is repeated by switching control circuit power off, then on to reset the regenerative (A.30) alarm after its occurrence, the external regenerative brake resistor will generate heat, resulting in an accident.
3) Instantaneous power failure

Undervoltage (A.10) occurs if control power is restored after a 100 ms or longer power failure or power is restored after the bus voltage has dropped to 200VDC or less. If the power failure further continues, control power is switched off. When the power failure is reset in this state, the alarm is reset and the servo motor will start suddenly if the servo-on signal (SON) is on. To prevent hazard, make up a sequence which will switch off the servo-on signal (SON) if an alarm occurs.
4) Incremental system

When an alarm occurs, the home position is lost. When resuming operation after deactivating the alarm, make a return to home position.

### 6.3.4 Electromagnetic Brake output

(a) Servo on signal command (from controller) ON/OFF
$\mathrm{Tb}(\mathrm{ms})$ after servo on (SON) is switched off, servo lock is released and the servo motor coasts. If the electromagnetic brake is made valid in the servo lock status, the brake life may be shorter. For use in vertical lift and similar applications, therefore, set Tb to the time which is about equal to the electromagnetic brake operation delay time and during which the load will not drop.

(b) Emergency stop signal (EMG) ON/OFF

(c) Alarm occurrence

(d) Both main and control circuit power supplies off


Note: Changes with the operating status.
(e) Only main circuit power supply off (control circuit power supply remains on)


Note: 1. Changes with the operating status.
2. When the main circuit power supply is off in a motor stop status, the main circuit off warning (A.E9) occurs and the ALM signal does not turn off.

### 6.3.5 Forward stroke limit / Reverse stroke limit



Note: Limit action can be select in parameter No. 20

## 7. Interfaces

This section gives the details of the I/O signal interfaces.
(1) Digital input interface DI-1

Give a signal with a relay or open collector transistor.
Source input is also possible. Refer to (5) in this section.


Note: This also applies to the use of the external power supply.
(2) Digital output interface DO-1

A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush current: 100 mA or less)

1) I nductive load

For use of internal power supply
(3) Analog output

Output $\pm 10 \mathrm{~V}$
Max. 1 mA
Servo amplifier

(5) Source input interface

When using the input interface of source type, all DI-1 input signals are of source type.
Source output cannot be provided.


Note: This also applies to the use of the external power supply.

## 8. Power Supply System Circuit

### 8.1 Connection example

Wire the power supply and main circuits as shown below. A no-fuse breaker (NFB) must be used with the input cables of the power supply.
Design the circuit so that the servo on signal also turns off as soon as the power is shut off on detection of alarm occurrence.


Note : For a single-phase 230VAC power supply, connect the power supply to L1 and L2 and keep L3 open.

### 8.2 Terminals

The positions and signal arrangements of the terminal blocks change with the capacity of the servo amplifier.

| Symbol | Signal | Description |  |  |
| :---: | :---: | :---: | :---: | :---: |
| L1, L2, L3 | Main circuit power supply | Main circuit power input terminals <br> Supply L1, L2 and L3 with the following power. <br> For a single-phase 230VAC power supply, connect the power supply to L1 and L2 and keep L3 open: |  |  |
|  |  | Servo amplifier <br> Power supply | $\begin{gathered} \text { MR-J2S-10A-S084 } \\ \text { to } 70 \mathrm{~A}-\mathrm{S} 084 \\ \hline \end{gathered}$ | $\begin{array}{c\|} \hline \text { MR-J2S-100A-S084 } \\ \text { to } 350 \mathrm{~A}-\mathrm{S} 084 \\ \hline \end{array}$ |
|  |  | 3-phase 200 to 230VAC, $50 / 60 \mathrm{~Hz}$ | $\mathrm{L}_{1} \cdot \mathrm{~L}_{2} \cdot \mathrm{~L}_{3}$ |  |
|  |  | $\begin{array}{\|l} \text { Single-phase 230VAC, } \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{array}$ | $\mathrm{L}_{1} \cdot \mathrm{~L}_{2}$ |  |
|  |  | Cannot be used for combination with the servo motor HC-SF $52 \cdot 53$. |  |  |
| U, V, w | Servo motor output | Servo motor power output terminals Connect to the servo motor power supply terminals (U, V, W). |  |  |
| L 11, L21 | Control circuit power supply | Control circuit power input terminals Supply $L_{11}$ and $L 21$ with single-phase $200-230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ power. |  |  |
| P, C, D | Regenerative brake option | Regenerative brake option connection terminals C and D are factory-connected. <br> When using the regenerative brake option, always remove wiring from across P-D and connect the regenerative brake option across P-C. |  |  |
| N |  | Do not connect. |  |  |
| $\square$ | Protective earth (PE) | Ground terminal <br> Connect this terminal to the protective earth (PE) terminals of the servo motor and control box for grounding. |  |  |

### 8.3 Power-on sequence

(1) Power-on procedure

1) Always wire the power supply as shown in above Section 3.7.1 using the magnetic contactor with the main circuit power supply (three-phase 200V: $L_{1}, L_{2}, L_{3}$, single-phase 230V: $L_{1}, L_{2}$ ). Configure up an external sequence to switch off the magnetic contactor as soon as an alarm occurs.
2) Switch on the control circuit power supply $L_{11}, L_{21}$ simultaneously with the main circuit power supply or before switching on the main circuit power supply. If the main circuit power supply is not on, the display shows the corresponding warning. However, by switching on the main circuit power supply, the warning disappears and the servo amplifier will operate properly.
3) The servo amplifier can accept the servo-on signal (SON) about 1 second after the main circuit power supply is switched on. Therefore, when SON is switched on simultaneously with the threephase power supply, the base circuit will switch on in about 1 second, and the ready signal (RD) will switch on in further about 20 ms , making the servo amplifier ready to operate.
4) When the reset signal (RES) is switched on, the base circuit is shut off and the servo motor shaft coasts.
(2) Timing chart


## 9. Display and Operation

### 9.1 Display Flowchart

Use the display (5-digit, 7-segment LED) on the front panel of the servo amplifier for status display, parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external sequences, and/or confirm the operation status. Press the "MODE" "UP" or "DOWN" button once to move to the next screen.
To refer to or set the expansion parameters, make them valid with parameter No. 19 (parameter write disable).


## 10. Parameters

For any parameter whose symbol is preceded by *, set the parameter value and switch power off once, then switch it on again to make that parameter setting valid.
For details of the parameters, refer to the corresponding items.
(1) Item list

| Class | No. | Symbol | Name and Function | Initial Value | Unit | Customer Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \tilde{n} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{U}{n} \\ & 0 \end{aligned}$ | 0 | *STY | Control mode, regenerative brake option selection | 0010 |  |  |
|  | 1 | *FTY | Feeding function selection | 0000 |  |  |
|  | 2 | *OP1 | Function selection 1 | 0004 |  |  |
|  | 3 | AUT | Auto tuning | 0105 |  |  |
|  | 4 | *CMX | Electronic gear numerator | 1 |  |  |
|  | 5 | *CDV | Electronic gear denominator | 1 |  |  |
|  | 6 | INP | Movement completion output range | 100 | pulse |  |
|  | 7 | PG1 | Position loop gain 1 | 36 | rad/s |  |
|  | 8 | ZTY | For manufacture setting | 0014 |  |  |
|  | 9 | ZRF |  | 500 |  |  |
|  | 10 | CRF |  | 10 |  |  |
|  | 11 | ZST |  | 0 |  |  |
|  | 12 | CRP | Rough match output range | 0 | $\times 10^{\text {STM }} \mu \mathrm{m}$ |  |
|  | 13 | J OG | J OG speed | 100 | $\mathrm{r} / \mathrm{min}$ |  |
|  | 14 | *STC | S-Curve acceleration/deceleration time constant | 0 | ms |  |
|  | 15 | *SNO | Station number setting | 0 | station |  |
|  | 16 | *BPS | Alarm history clear | 0000 |  |  |
|  | 17 | MOD | For manufacture setting | 0100 |  |  |
|  | 18 | *DMD | Status display selection | 0000 |  |  |
|  | 19 | *BLK | Parameter block | 000E |  |  |


| Class | No. | Symbol | Name and Function | Initial Value | Unit | Customer Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20 | *OP2 | Function selection 2 | 0000 |  |  |
|  | 21 | *OP3 | For manufacturer setting | 0000 |  |  |
|  | 22 | *OP4 | Function selection 4 | 0000 |  |  |
|  | 23 | *SIC | Serial communications time-out selection | 0 | sec |  |
|  | 24 | FFC | Feed forward gain | 0 | \% |  |
|  | 25 | VCO | For manufacturer setting | 0 |  |  |
|  | 26 | TLO |  | 0 |  |  |
|  | 27 | *ENR | Encoder output pulses | 4000 | Pulse |  |
|  | 28 | TL1 | Internal torque limit 1 | 100 | \% |  |
|  | 29 | TL2 | Internal torque limit 2 | 100 | \% |  |
|  | 30 | *BKC | Backlash compensation | 0 | pulse |  |
|  | 31 | MO1 | Analog monitor ch1 offset | 0 | mV |  |
|  | 32 | MO2 | Analog monitor ch2 offset | 0 | mV |  |
|  | 33 | MBR | Electromagnetic brake sequence output | 100 | ms |  |
|  | 34 | DG2 | Ratio of load inertia moment to motor inertia moment | 70 | $\times 0.1$ times |  |
|  | 35 | PG2 | Position loop gain 2 | 35 | $\mathrm{rad} / \mathrm{s}$ |  |
|  | 36 | VG1 | Speed loop gain 1 | 177 | rad/s |  |
|  | 37 | VG2 | Speed loop gain 2 | 817 | rad/s |  |
|  | 38 | VIC | Speed integral compensation | 48 | ms |  |
|  | 39 | VDC | Speed differential compensation | 980 |  |  |
|  | 40 | OVA | For manufacture setting | 0 |  |  |
|  | 41 | DSS | Direct addressing selection | 0000 |  |  |
|  | 42 | *ZPS | For manufacturer setting | 0 |  |  |
|  | 43 | DCT |  | 1000 |  |  |
|  | 44 | ZTM |  | 100 |  |  |
|  | 45 | ZTT |  | 30 |  |  |
|  | 46 | SMX | Electronic gear numerator | 8192 |  |  |
|  | 47 | SDV | Electronic gear denominator | 1024 |  |  |
|  | 48 | STD | Synchronous encoder Acc. / Dec. time constant | 500 | ms |  |
|  | 49 | STE | Synchronous encoder smoothing time constant | 0 | ms |  |
|  | 50 |  | F or manufacturer setting | 0 |  |  |
|  | 51 |  |  | 0 |  |  |
|  | 52 |  |  | 0 |  |  |
|  | 53 |  |  | 0 |  |  |


| Class | No. | Symbol | Name and Function | Initial Value | Unit | Customer Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 54 | *OP5 | Function selection 5 | 0000 |  |  |
|  | 55 | *OP6 | Function selection 6 | 0000 |  |  |
|  | 56 | *OP7 | Function selection 7 | 0000 |  |  |
|  | 57 | *OP8 | Function selection 8 | 0000 |  |  |
|  | 58 | *OP9 | For manufacture setting | 0000 |  |  |
|  | 59 | *OPA | Function selection A | 0000 |  |  |
|  | 60 | ORP | Manual zeroing selection | 0000 |  |  |
|  | 61 | NH1 | Machine resonance suppression filter 1 | 0000 |  |  |
|  | 62 | NH2 | Machine resonance suppression filter 2 | 0000 |  |  |
|  | 63 | LPF | Low-pass filter / adaptive vibration suppression control | 0000 |  |  |
|  | 64 | GD2B |  | 70 |  |  |
|  | 65 | PG2B |  | 100 |  |  |
|  | 66 | VG2B |  | 100 |  |  |
|  | 67 | VICB |  | 100 |  |  |
|  | 68 | *CDP |  | 0000 |  |  |
|  | 69 | CDS |  | 10 |  |  |
|  | 70 | CDT |  | 1 |  |  |
|  | 71 | VPI | For manufacture setting | 0 |  |  |
|  | 72 | VLI |  | 10000 |  |  |
|  | 73 | ERZ |  | 10 |  |  |
|  | 74 | ER2 |  | 10 |  |  |
|  | 75 | SRT |  | 100 |  |  |
|  | 76 | TRT |  | 100 |  |  |
|  | 77 | DBT |  | 100 |  |  |
|  | 78 | *DIO | Input/Output device selection (CN1A-19) | 0000 |  |  |
|  | 79 | *DI1 | Input device selection 1 (CN1A-19,8) | 0000 |  |  |
|  | 80 | *DI2 | Input device selection 2 (CN1B-5,7) | 0802 |  |  |
|  | 81 | *DI3 | Input device selection 3 (CN1B-8,9) | 0706 |  |  |
|  | 82 | *DI4 | Input device selection 4 (CN1A-14,15) | 011F |  |  |
|  | 83 | *DI5 | Input device selection 5 (CN1B-16,17) | 2100 |  |  |
|  | 84 | *DI6 | Input device selection 6 (Automatic ON) | 0030 |  |  |
|  | 85 | *DI7 | Input device selection 7 (Automatic ON) | 0000 |  |  |
|  | 86 | *DI8 | Input device selection 8 (Automatic ON) | 0001 |  |  |
|  | 87 | DI9 | Emergency stop / Stroke limit pole selection | 0000 |  |  |
|  | 88 | *DO1 | Output device selection 1 (CN1A-18,19) | 010D |  |  |
|  | 89 | *DO2 | Output device selection 2 (CN1B-4,6) | 2600 |  |  |
|  | 90 | *DO3 | Output device selection 3 (CN1B-18,19) | 2702 |  |  |


| Class | No. | Symbol | Name and Function | Initial Value | Unit | Customer Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 91 | *OPB | For manufacture setting | 0000 |  |  |
|  | 92 | *FCT |  | 0000 |  |  |
|  | 93 | BC1 |  | 400 |  |  |
|  | 94 | BC2 |  | 100 |  |  |
|  | 95 | *FCM |  | 1 |  |  |
|  | 96 | *FCD |  | 1 |  |  |
|  | 97 | OSL |  | 0 |  |  |
|  | 98 | ZSP | Zero speed | 50 | r/min |  |
|  | 99 | DSP | For manufacture setting | 0000 |  |  |
|  | 100 | *DIS |  | 0000 |  |  |
|  | 101 | *DOS |  | 0000 |  |  |
|  | 102 | *AP1 |  | 0000 |  |  |
|  | 103 | *AP2 |  | 0000 |  |  |
|  | 104 | CMS |  | 1 |  |  |
|  | 105 | CDS1 |  | 1 |  |  |
|  | 106 |  |  | 0 |  |  |
|  | 107 |  |  | 0 |  |  |
|  | 108 |  |  | 0 |  |  |
|  | 109 |  |  | 0 |  |  |
|  | 110 |  |  | 0 |  |  |
|  | 111 |  | e set | 0 |  |  |
|  | 112 |  |  | 0 |  |  |
|  | 113 |  |  | 0 |  |  |
|  | 114 |  |  | 0 |  |  |
|  | 115 | *SCD |  | 0001 |  |  |
|  | 116 | * N1 | External I/O function selection 1 | 0000 |  |  |
|  | 117 | *IN2 | External I/O function selection 2 | 0000 |  |  |
|  | 118 | *IN3 | External I/O function selection 3 | 0000 |  |  |
|  | 119 |  | For manufacture setting | 0 |  |  |
|  | 120 |  |  | 0 |  |  |
|  | 121 |  |  | 0 |  |  |
|  | 122 |  |  | 0 |  |  |
|  | 123 |  |  | 0 |  |  |
|  | 124 |  |  | 0 |  |  |

(2) Detail list

| Class | No | Symbo I | Name and function | Initial Value | Unit | Setting Rnge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | *STY | Control mode, Regenerative brake option selection Use to select regenerative brake option. <br> Selection of regenerative brake option <br> 0 : Not used <br> 1: Spare (do not set) <br> 2: MR-RB032 <br> 3: MR-RB12 <br> 4: MR-RB32 <br> 5: MR-RB30 <br> 6: MR-RB50 <br> 7: Spare (do not set) <br> 8: MR-RB31 <br> 9: MR-RB51 | 0010 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 0 A 10 \mathrm{~h} \end{aligned}$ |
|  | 1 | *FTY | Feeding system selection <br> Used to set the feed length multiplication factor and <br> External pulse multiplication factor. <br> ST1 coordinate system selection <br> 0 : Address is incremented in CCW direction <br> 1: Address is incremented in CW direction <br> Feed length multiplication factor (STM) <br> 0: 1 time <br> 1: 10 times <br> 2: 100 times <br> 3: 1000 times <br> Synchronous signal direction selection <br> 0 : CCW at A-phase advance <br> 1: CW at A-phase advance | 0000 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 0131 \mathrm{~h} \end{aligned}$ |
|  | 2 | *OP1 | Function selection 1 <br> U sed to select the input filter and absolute position detection system. <br> Input filter <br> If external input signal causes chattering due To noise, etc., input filter is used to suppress it. <br> 0 : None <br> 1: 0.888 msec <br> 2: 1.777 msec <br> 3: 2.666 msec <br> 4: 3.555 msec <br> 5: 4.444 msec <br> 6: 5.333 msec | 0004 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 0006 \mathrm{~h} \end{aligned}$ |



| Class | No. | Symbol | Name and Function | Initial Value | Unit | Setting Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | *CDV | Electronic gear denominator <br> Setting example Roll diameter: 50 mm <br> Reduction ratio: 3/7 <br> Number of pulses: 16384 pulses $\begin{aligned} \frac{\text { Number of pulses (CMX) }}{\text { Moving distance (CDV) }} & =\frac{16384}{50 \times \pi \times 3 / 7 \times 1000} \\ & =\frac{7168}{9375 \pi} \\ & =\frac{7168}{29452} \end{aligned}$ <br> Hence, set 7168 to CMX and 29452 to CDV. <br> Note: When there is a fraction, perform a carry within the setting range and round off that fraction. | 1 |  | 1 to 65535 |
|  | 6 | INP | Movement completion output rang <br> Used to set the droop pulse range when the movement completion <br> (INP) signal is output. | 100 | pulse | 0 to 10000 |
|  | 7 | PG1 | Position loop gain 1 <br> Used to set the gain of position loop 1. <br> Increase the gain to improve tracking performance in response to the position command. | 35 | $\mathrm{rad} / \mathrm{s}$ | 4 to 2000 |
|  | 8 | ZTY | For manufacture setting | 0014 |  |  |
|  | 9 | ZRF |  | 500 |  |  |
|  | 10 | CRF |  | 10 |  |  |
|  | 11 | ZST |  | 0 |  |  |





| Class | No. | Symbol | Name and Function | Initial Value | Unit | Setting Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 28 | TL1 | Internal torque limit 1 <br> Used to limit servo motor-generated torque on the assumption that the maximum torque is $100 \%$. When 0 is set, torque is not produced. <br> This setting value will be 8 V for torque monitor in monitor output. | 100 | \% | 0 to 100 |
|  | 29 | TL2 | Internal torque limit 2 <br> Used to limit servo motor-generated torque on the assumption that the maximum torque is $100 \%$. When 0 is set, torque is not produced. Made valid by switching on the internal torque limit selection signal. | 100 | \% | 0 to 100 |
|  | 30 | *BKC | Backlash compensation <br> Used to set the backlash compensation made when the command direction is reversed. <br> This function compensates for the number of backlash pulses in the opposite direction to the zeroing direction. In the absolute position detection system, this function compensates for the backlash pulse count in the direction opposite to the operating direction at power-on. | 0 | pulse | 0 to 1000 |
|  | 31 | MO1 | Analog monitor ch1 offset <br> Used to set the offset voltage of the analog monitor ch1 output (MO1). | 0 | mV | -999 to 999 |
|  | 32 | MO2 | Analog monitor ch2 offset <br> Used to set the offset voltage of the analog monitor ch2 output (MO2) | 0 | mV | -999 to 999 |
|  | 33 | MBR | Electromagnetic brake sequence output <br> Used to set the delay time between when the electromagnetic brake interlock signal (MBR) switches off and when the base circuit is shut off. | 100 | ms | 0 to 1000 |
|  | 34 | GD2 | Ratio of load inertia moment to motor inertia moment: <br> Used to set the ratio of the load inertia moment to the servo motor shaft inertia moment. <br> When auto tuning is selected, the result of auto tuning is automatically set. | 70 | $\begin{gathered} \times 0.1 \\ \text { times } \end{gathered}$ | 0 to 3000 |
|  | 35 | PG2 | Position loop gain 2 <br> Used to set the gain of the position loop. <br> Set this parameter to increase the position response level to load disturbance. Higher setting increases the response level but is liable to generate vibration and/or noise. When auto tuning is selected, the result of auto tuning is automatically set. | 35 | $\mathrm{rad} / \mathrm{s}$ | 1 to 1000 |
|  | 36 | VG1 | Speed loop gain 1 <br> Normally this parameter setting need not be changed. <br> Higher setting increases the response level but is liable to generate vibration and/or noise. <br> When auto tuning is selected, the result of auto tuning is automatically set. | 177 | $\mathrm{rad} / \mathrm{s}$ | 20 to 8000 |
|  | 37 | VG2 | Speed loop gain 2 <br> Set this parameter when vibration occurs on machines of low rigidity or large backlash. <br> Higher setting increases the response level but is liable to generate vibration and/or noise. <br> When auto tuning is selected, the result of auto tuning is automatically set. | 817 | rad/s | 20 to 20000 |
|  | 38 | VIC | Speed integral compensation <br> Used to set the integral time constant of the speed loop. When auto tuning is selected, the result of auto tuning is automatically set. | 48 | ms | 1 to 1000 |
|  | 39 | VDC | Speed differential compensation <br> Used to set the differential compensation. <br> Made valid when the proportion control signal is switched on. | 980 |  | 0 to 1000 |


| Class | No. | Symbol | Name and Function | Initial Value | Unit | Setting Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 40 | OVA | For manufacturing setting | 0 |  |  |
|  | 41 | DSS | Direct specified mode selection <br> 0: Point block No. specified mode <br> 1: Point instruction and block No. specified of speed and acc. / dec. <br> 2: Instruction of position and speed | 0000 |  | 0000 to 0002 |
|  | 42 | *ZPS | Zeroing position data <br> Used to set the current position on completion of zeroing. | 0 | $\begin{aligned} & \times 10^{\mathrm{S}} \\ & \mathrm{Tm} \mu \mathrm{~m} \end{aligned}$ | $\begin{gathered} -32768 \\ \text { to } \\ 32767 \end{gathered}$ |
|  | 43 | DCT | Moving distance after proximity dog <br> Used to set the moving distance after proximity dog in count type zeroing. | 1000 | $\begin{aligned} & \times 10^{\mathrm{S}} \\ & \mathrm{Tm} \mu \mathrm{~m} \\ & \hline \end{aligned}$ | 0 to 65535 |
|  | 44 | ZTM | Stopper type zeroing stopper time <br> In stopper type zeroing, used to set the time from when the machine part is pressed against the stopper and the torque limit set in parameter No.45(ZTT) is reached to when the home position is set. | 100 | ms | 5 to 1000 |
|  | 45 | ZTT | Stopper type zeroing torque limit <br> Used to set the torque limit value relative to the max. torque in [\%] in stopper type zeroing. | 15 | \% | 1 to 100 |
|  | 46 | SMX | Electronic gear numerator for synchronous encoder input | 8192 |  | $\begin{gathered} 1 \\ \text { to } \\ 16384 \end{gathered}$ |
|  | 47 | SDV | Electronic gear denominator for synchronous encoder input | 1024 |  | $\begin{gathered} 1 \\ \text { to } \\ 16384 \end{gathered}$ |
|  | 48 | STD | Synchronous encoder Acc. / Dec. time constant Set the Acc. / Dec. time reach to rated speed of servo motor. This parameter will be disabled while "SYC" signal is turning on. | 500 | ms | $\begin{gathered} 0 \\ \text { to } \\ 20000 \end{gathered}$ |
|  | 49 | STE | Synchronous encoder smoothing time constant Set the smoothing filter for synchronous operation. | 0 | ms | $\begin{gathered} 0 \\ \text { to } \\ 20 \end{gathered}$ |
|  | 50 |  | For manufacturing setting | 0 |  |  |
|  | 51 |  |  | 0 |  |  |
|  | 52 |  |  | 0 |  |  |
|  | 53 |  |  | 0 |  |  |




| Class | No. | Symbol | Name and Function | Initial <br> Value | Unit | Setting Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 63 | LPF | Low-pass filter/adaptive vibration suppression control <br> Used to selection the low-pass filter and adaptive vibration suppression control. | 0000 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 1217 \mathrm{~h} \end{aligned}$ |
|  | 64 | GD2B | For manufacturing setting | 70 |  |  |
|  | 65 | PG2B |  | 100 |  |  |
|  | 66 | VG2B |  | 100 |  |  |
|  | 67 | VICB |  | 100 |  |  |
|  | 68 | *CDP |  | 0000 |  |  |
|  | 69 | CDS |  | 10 |  |  |
|  | 70 | CDT |  | 1 |  |  |
|  | 71 | VPI |  | 100 |  |  |
|  | 72 | VLI |  | 10000 |  |  |
|  | 73 | ERZ |  | 10 |  |  |
|  | 74 | ER2 |  | 10 |  |  |
|  | 75 | STR |  | 100 |  |  |
|  | 76 | TRT |  | 100 |  |  |
|  | 77 | DBT |  | 100 |  |  |
|  | 78 | *DIO | Input / Output device selection Used to select the CN1A-19 pin to output or input device <br> CN1A-19 pin <br> 0 : Output device <br> 1: Input device | 0000 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 0001 \mathrm{~h} \end{aligned}$ |


| Class | No. | Symbol |  | Nam | d Functio |  | Initial <br> Value | Unit | Setting Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 79 | *DI 1 | Input device Used to select $\square$ | ction 1 <br> function of CN $\qquad$ Set to the <br> Set to th <br> Input function <br> No function <br> Forced stop <br> Servo on <br> Alarm reset <br> FWD stroke limit <br> REV stroke limit <br> FWD rotation start <br> REV rotation start <br> Auto. / Manu. <br>  <br> Temp. stop / Restart | pin a <br>  <br>  <br> ction of <br>  <br> Setting <br> 17 <br> 18 <br> 19 <br> $1 A$ <br> $1 B$ <br> $1 C$ <br> $1 D$ <br> $1 E$ <br> $1 F$ <br> 20 <br> 21 <br> 22 <br> 23 <br> 34 <br> 25 <br> 26 <br> 27 <br> 28 <br> 29 <br> $2 A$ <br> $2 B$ <br> $2 C$ <br> $2 D$ | CN1A-19 pin <br> N1A-8 pin <br> CN1A-19 pin <br> Input function <br> Synchronous op. start <br> Point block \# selection 1 <br> Point block \# selection 2 <br> Point block \# selection 3 <br> Point block \# selection 4 <br> Point block \# selection 5 | 0000 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { 3F3Fh } \end{aligned}$ |
|  | 80 | *DI2 | Input device selection 2 <br> Used to select the function of CN1B-5 pin and CN1B-7 pin |  |  |  | 0802 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 3 F 3 F h \end{aligned}$ |
|  | 81 | *DI3 | Input device selection 3 Used to select the function of CN1B-8 pin and CN1B-9 pin <br> Set to the function of CN1B-8 pin <br> Set to the function of CN1B-9 pin |  |  |  | 0706 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { 3F3Fh } \end{aligned}$ |
|  | 82 | *DI4 | Input device selection 4 <br> Used to select the function of CN1B-14 pin and CN1B-15 pin $\square$ Set to the function of CN1B-14 pin <br> Set to the function of CN1B-15 pin |  |  |  | 011F |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { 3F3Fh } \end{aligned}$ |


| Class | No. | Symbol | Name and Function | Initial Value | Unit | Setting Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 83 | *DI5 | Input device selection 5 <br> Used to select the function of CN1B-16 pin and CN1B-17 pin <br> Set to the function of CN1B-16 pin <br> Set to the function of CN1B-17 pin | 2100 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & 3 F 3 F \end{aligned}$ |
|  | 84 | *DI6 | Input device selection 6 Used to set automatically ON of function device | 0030 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { FFFFh } \end{aligned}$ |
|  | 85 | *DI7 | Input device selection 7 Used to set automatically ON of function device $\square$ | 0000 |  | $\begin{aligned} & \text { 0000h } \\ & \text { to } \\ & \text { FFFFh } \end{aligned}$ |
|  | 86 | *DI8 | Input device selection 8 Used to set automatically ON of function device <br> Point block \# selection 1 <br> Point block \# selection 2 <br> Point block \# selection 3 <br> Point block \# selection 4 <br> Point block \# selection 5 | 0001 |  | $\begin{aligned} & \hline 0000 \mathrm{~h} \\ & \text { to } \\ & \text { FFFFh } \end{aligned}$ |





## 11. Trouble Shooting

11.1 Alarms and warning list

|  | Display | Alarm code (Note 2) |  |  | Name | Alarm deactivation |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CN1B-19 | CN1A-18 | CN1A-19 |  | Power $\mathrm{OFF} \rightarrow \mathrm{ON}$ | Alarm reset (RES) signal |
| $\frac{\sum_{5}^{n}}{\frac{\pi}{4}}$ | AL. 10 | 0 | 1 | 0 | Undervoltage | 0 | $\bigcirc$ |
|  | AL. 12 | 0 | 0 | 0 | Memory error 1 | 0 |  |
|  | AL. 13 | 0 | 0 | 0 | Clock error | $\bigcirc$ |  |
|  | AL. 15 | 0 | 0 | 0 | Memory error 2 | $\bigcirc$ |  |
|  | AL. 16 | 1 | 1 | 0 | Encoder error 1 | $\bigcirc$ |  |
|  | AL. 17 | 0 | 0 | 0 | Board error | $\bigcirc$ |  |
|  | AL. 19 | 0 | 0 | 0 | Memory error 3 | $\bigcirc$ |  |
|  | AL.1A | 1 | 1 | 0 | Motor combination error | $\bigcirc$ |  |
|  | AL. 20 | 1 | 1 | 0 | Encoder error 2 | $\bigcirc$ |  |
|  | AL. 24 | 1 | 0 | 0 | Main circuit error | $\bigcirc$ |  |
|  | AL. 25 | 1 | 1 | 0 | Absolute position erase | $\bigcirc$ |  |
|  | AL. 30 | 0 | 0 | 1 | Regenerative error | $\bigcirc$ | $\bigcirc$ |
|  | AL. 31 | 1 | 0 | 1 | Overspeed | $\bigcirc$ | $\bigcirc$ |
|  | AL. 32 | 1 | 0 | 0 | Overcurrent | $\bigcirc$ | $\bigcirc$ |
|  | AL. 33 | 0 | 0 | 1 | Overvoltage | $\bigcirc$ |  |
|  | AL. 35 | 1 | 0 | 1 | Command pulse frequency error | $\bigcirc$ | $\bigcirc$ |
|  | AL. 37 | 0 | 0 | 0 | Parameter error | $\bigcirc$ |  |
|  | AL. 45 | 0 | 1 | 1 | Main circuit device overheat | $\bigcirc$ | $\bigcirc$ |
|  | AL. 46 | 0 | 1 | 1 | Servo motor overheat | $\bigcirc$ | $\bigcirc$ |
|  | AL. 50 | 0 | 1 | 1 | Overload 1 | O (Note 1) | $\bigcirc$ (Note 1) |
|  | AL. 51 | 0 | 1 | 1 | Overload 2 | O (Note 1) | O (Note 1) |
|  | AL. 52 | 1 | 0 | 1 | Error excessive | $\bigcirc$ (Note 1) | O (Note 1) |
|  | AL. 72 | - | - | - | Option module communication error | $\bigcirc$ |  |
|  | AL. 76 | - | - | - | Option module ID error | $\bigcirc$ |  |
|  | AL.8A | 0 | 0 | 0 | Serial communication time-out error | $\bigcirc$ | $\bigcirc$ |
|  | AL.8D |  |  |  | CC-Link communication alarm |  |  |
|  | AL.8E | 0 | 0 | 0 | Serial communication error | $\bigcirc$ | $\bigcirc$ |
|  | 88888 | 0 | 0 | 0 | Watchdog | $\bigcirc$ |  |
| $\begin{aligned} & \text { n } \\ & . \frac{C}{n} \\ & \frac{1}{0} \\ & 3 \end{aligned}$ | AL. 90 |  |  |  | Zeroing incomplete | Removing the cause of occurrence deactivates the alarm automatically. |  |
|  | AL. 92 |  |  |  | Open battery cable warning |  |  |
|  | AL. 96 |  |  |  | Home position setting warning |  |  |
|  | AL.9D |  |  |  | CC-Link communication warning |  |  |
|  | AL.9F |  |  |  | Battery warning |  |  |
|  | AL.E0 |  |  |  | Excessive regenerative warning |  |  |
|  | AL.E1 |  |  |  | Overload warning |  |  |
|  | AL.E3 |  |  |  | Absolute position counter warning |  |  |
|  | AL.E6 |  |  |  | Servo emergency stop warning |  |  |
|  | AL.E9 |  |  |  | Main circuit off warning |  |  |
|  | AL.EA |  |  |  | ABS servo-on warning |  |  |

Note: 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.
2. $0:$ Pin-SG off (open)

1: Pin-SG on (short)
11.2 Operation performed at alarm/warning occurrence

| Fault location | Description | Operation mode |  |
| :---: | :---: | :---: | :---: |
|  |  | Test operation | CC-Link operation |
| Servo alarm occurrence | Servo operation | Stopped | Stopped |
|  | Data communication <br> (Between amplifier and potion module) | Continued | Continued |
|  | Data communication <br> (Between qption moduleand master module) | Continued | Continued |
| Option module Communication alarm occurrence | Servo operation | Stopped | Stopped |
|  | Data communication <br> (Between amplifier and option module) | Stopped | Stopped |
|  | Data communication <br> (Between qption module and master module) | Stopped | Stopped |
| CC-Link communication alarm occurrence | Servo operation | Stopped | Stopped |
|  | Data communication <br> (Between amplifier and option module) | Continued | Continued |
|  | Data communication <br> (Between option moduleand master module) | Stopped | Stopped |
| PLC alarm or stop occurrence | Servo operation | Continued | Stopped |
|  | Data communication <br> (Between amplifier and option module) | Continued | Continued |
|  | Data communication <br> (Between option moduleand master module) | Stopped | Stopped |

Note: AL72 or 76 that is displayed on the servo amplifier will be occurred when MR-J2S-T01 option module has an alarm. The receiving data RX, RWw are cleared while alarm status. The details of these alarms are as follows;

| Display | Name | Description | Cause | Action |
| :---: | :--- | :--- | :--- | :--- |
| AL72 | Option module <br> communication <br> error | No option module or <br> disconnected the <br> option module | 1. No option module <br> 2. Fault parts in the <br> option module | 1.Connect correctly |
| 2.Change the option module |  |  |  |  |
| AL76 | Option module <br>  <br>  <br> ID error | Option module ID <br> mismatch | Wrong option <br> module connected | 1.Use correct servo amplifier <br> 2.Change the option module |

AL8D or AL9D that is displayed on the servo amplifier will be occurred when MR-J2S-T-1 option module directed an alarm. The receiving data RX, RWw are cleared while alarm or warning status. The details of these alarms are as follows;

| Display | Name | Description | Cause | Action |
| :---: | :---: | :---: | :---: | :---: |
| AL8D | CC-Link communication error | Option module could not communicate master module | 1.Wrong station \# setting <br> 2.Wrong baudrate setting <br> 3.Miss wiring | 1.Set the correct station \# 2. Set the correct baudrate setting <br> 3.Correct the wiring |
| AL9D | CC-Link communication warning | Station number switch or baudrate switch was changed while power on | 1.Station number switch was changed 2.Baudrate switch was changed 3.Station occupation switch was changed | 1. Back to the previous setting |

### 11.3 CC-Link communication alarm

Any of the following indications is provided on the communication alarm display.

| (Note) Communication alarm display LEDs |  |  |  | Operation |
| :---: | :---: | :---: | :---: | :---: |
| L.RUN | SD | RD | L.ERR |  |
| $\bigcirc$ | (0) | © | © | Normal communications are made but CRC error sometimes occurs due to noise. |
| $\bigcirc$ | © | (0) | $\bullet$ | Normal communications |
| O | (0) | $\bigcirc$ | © | Hardware fault |
| $\bigcirc$ | © | $\bullet$ | $\bullet$ | Hardware fault |
| $\bigcirc$ | $\bullet$ | ( 0 | ( | Receive data resulted in CRC error and response cannot be made. |
| $\bigcirc$ | $\bullet$ | ( 0 | $\bullet$ | Data does not reach host station. |
| 0 | $\bullet$ | - | (0) | Hardware fault |
| $\bigcirc$ | $\bullet$ | $\bullet$ | $\bullet$ | Hardware fault |
| $\bullet$ | © | © | © | Polling response is made but refresh receive is in CRC error. |
| - | ( ${ }^{\text {() }}$ | ( ${ }^{\text {( }}$ | $\bigcirc$ | Hardware fault |
| $\bullet$ | © | $\bigcirc$ | © | Hardware fault |
| $\bullet$ | (2) | $\bullet$ | $\bigcirc$ | Hardware fault |
| $\bullet$ | $\bigcirc$ | (0) | () | Data addressed to host station resulted in CRC error. |
| $\bullet$ | - | © | - | Data does not reach host station or data addressed to host station cannot be received due to noise. |
| $\bullet$ | $\bullet$ | $\bullet$ | ( | Hardware fault |
| $\bullet$ | $\bullet$ | $\bullet$ | 0 | Baudrate setting unauthorized |
| $\bullet$ | $\bullet$ | $\bigcirc$ | $\bigcirc$ | Station number setting unauthorized |
| - | $\bigcirc$ | O | © | Baud rate or station number setting changed at any point (ERROR flickers for about 0.4s) |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | Data cannot be received due to power-off, power supply section failure, open cable or like. <br> WDT error occurrence (hardware fault) |

Note. O: On ©: Off ©: Flickering

| Print Date | Document \# | Revision | Editor |
| :---: | :---: | :--- | :---: |
| $‘ 02 / 01 / 09$ | BCN-B11127-478* | First edition | H.Ogi |

